golang http transport源码分析

| 分类 技术  | 标签 Golang 

前言

Golang http库在日常开发中使用会很多。这里通过一个demo例子出发,从源码角度梳理golang http库底层的数据结构以及大致的调用流程

例子

package main

import (
	"fmt"
	"net/http"
	"net/url"
	"time"
	"net"
)

func send_http_request(addr string, port int) error {
	client := &http.Client{
		Transport: &http.Transport{
			Proxy: http.ProxyFromEnvironment,
			DialContext: (&net.Dialer{
				Timeout:   30 * time.Second,
				KeepAlive: 30 * time.Second,
				DualStack: true,
			}).DialContext,
			MaxIdleConns:        100,
			MaxIdleConnsPerHost: 100,
			IdleConnTimeout:     90 * time.Second,
		},
	}

	// construct encoded endpoint
	Url, err := url.Parse(fmt.Sprintf("http://%s:%d", addr, port))
	if err != nil {
		return err
	}
	Url.Path += "/index"
	endpoint := Url.String()
	req, err := http.NewRequest("GET", endpoint, nil)
	if err != nil {
		return err
	}
	// use httpClient to send request
	rsp, err := client.Do(req)
	if err != nil {
		return err
	}
	// close the connection to reuse it
	defer rsp.Body.Close()
	// check status code
	if rsp.StatusCode != http.StatusOK {
		return fmt.Errorf("get rsp error: %v", rsp)
	}
	return err
}

func main() {
	send_http_request("xxx", 8080)
}

源码分析

先看看http.Client结构体,如下:

// A Client is an HTTP client. Its zero value (DefaultClient) is a
// usable client that uses DefaultTransport.
//
// The Client's Transport typically has internal state (cached TCP
// connections), so Clients should be reused instead of created as
// needed. Clients are safe for concurrent use by multiple goroutines.
//
// A Client is higher-level than a RoundTripper (such as Transport)
// and additionally handles HTTP details such as cookies and
// redirects.
//
// When following redirects, the Client will forward all headers set on the
// initial Request except:
//
// • when forwarding sensitive headers like "Authorization",
// "WWW-Authenticate", and "Cookie" to untrusted targets.
// These headers will be ignored when following a redirect to a domain
// that is not a subdomain match or exact match of the initial domain.
// For example, a redirect from "foo.com" to either "foo.com" or "sub.foo.com"
// will forward the sensitive headers, but a redirect to "bar.com" will not.
//
// • when forwarding the "Cookie" header with a non-nil cookie Jar.
// Since each redirect may mutate the state of the cookie jar,
// a redirect may possibly alter a cookie set in the initial request.
// When forwarding the "Cookie" header, any mutated cookies will be omitted,
// with the expectation that the Jar will insert those mutated cookies
// with the updated values (assuming the origin matches).
// If Jar is nil, the initial cookies are forwarded without change.
//
type Client struct {
	// Transport specifies the mechanism by which individual
	// HTTP requests are made.
	// If nil, DefaultTransport is used.
	Transport RoundTripper

	// CheckRedirect specifies the policy for handling redirects.
	// If CheckRedirect is not nil, the client calls it before
	// following an HTTP redirect. The arguments req and via are
	// the upcoming request and the requests made already, oldest
	// first. If CheckRedirect returns an error, the Client's Get
	// method returns both the previous Response (with its Body
	// closed) and CheckRedirect's error (wrapped in a url.Error)
	// instead of issuing the Request req.
	// As a special case, if CheckRedirect returns ErrUseLastResponse,
	// then the most recent response is returned with its body
	// unclosed, along with a nil error.
	//
	// If CheckRedirect is nil, the Client uses its default policy,
	// which is to stop after 10 consecutive requests.
	CheckRedirect func(req *Request, via []*Request) error

	// Jar specifies the cookie jar.
	//
	// The Jar is used to insert relevant cookies into every
	// outbound Request and is updated with the cookie values
	// of every inbound Response. The Jar is consulted for every
	// redirect that the Client follows.
	//
	// If Jar is nil, cookies are only sent if they are explicitly
	// set on the Request.
	Jar CookieJar

	// Timeout specifies a time limit for requests made by this
	// Client. The timeout includes connection time, any
	// redirects, and reading the response body. The timer remains
	// running after Get, Head, Post, or Do return and will
	// interrupt reading of the Response.Body.
	//
	// A Timeout of zero means no timeout.
	//
	// The Client cancels requests to the underlying Transport
	// as if the Request's Context ended.
	//
	// For compatibility, the Client will also use the deprecated
	// CancelRequest method on Transport if found. New
	// RoundTripper implementations should use the Request's Context
	// for cancellation instead of implementing CancelRequest.
	Timeout time.Duration
}
  • Transport:http client实际发送请求结构体
  • Timeout:http client请求超时设置(后续在详细分析)

在看Transport结构体(net/http/client.go):

// RoundTripper is an interface representing the ability to execute a
// single HTTP transaction, obtaining the Response for a given Request.
//
// A RoundTripper must be safe for concurrent use by multiple
// goroutines.
type RoundTripper interface {
	// RoundTrip executes a single HTTP transaction, returning
	// a Response for the provided Request.
	//
	// RoundTrip should not attempt to interpret the response. In
	// particular, RoundTrip must return err == nil if it obtained
	// a response, regardless of the response's HTTP status code.
	// A non-nil err should be reserved for failure to obtain a
	// response. Similarly, RoundTrip should not attempt to
	// handle higher-level protocol details such as redirects,
	// authentication, or cookies.
	//
	// RoundTrip should not modify the request, except for
	// consuming and closing the Request's Body. RoundTrip may
	// read fields of the request in a separate goroutine. Callers
	// should not mutate or reuse the request until the Response's
	// Body has been closed.
	//
	// RoundTrip must always close the body, including on errors,
	// but depending on the implementation may do so in a separate
	// goroutine even after RoundTrip returns. This means that
	// callers wanting to reuse the body for subsequent requests
	// must arrange to wait for the Close call before doing so.
	//
	// The Request's URL and Header fields must be initialized.
	RoundTrip(*Request) (*Response, error)
}

从注释可以看到RoundTripper负责HTTP请求的建立,发送,接收HTTP应答以及关闭;但是不应该对HTTP应答进行额外处理,例如:redirects, authentication, or cookies等上层协议细节。另外RoundTripper也是goroutines-safe的

其中RoundTrip方法的Request和Response参数如下(net/http/request.go):

// A Request represents an HTTP request received by a server
// or to be sent by a client.
//
// The field semantics differ slightly between client and server
// usage. In addition to the notes on the fields below, see the
// documentation for Request.Write and RoundTripper.
type Request struct {
	// Method specifies the HTTP method (GET, POST, PUT, etc.).
	// For client requests, an empty string means GET.
	//
	// Go's HTTP client does not support sending a request with
	// the CONNECT method. See the documentation on Transport for
	// details.
	Method string

	// URL specifies either the URI being requested (for server
	// requests) or the URL to access (for client requests).
	//
	// For server requests, the URL is parsed from the URI
	// supplied on the Request-Line as stored in RequestURI.  For
	// most requests, fields other than Path and RawQuery will be
	// empty. (See RFC 7230, Section 5.3)
	//
	// For client requests, the URL's Host specifies the server to
	// connect to, while the Request's Host field optionally
	// specifies the Host header value to send in the HTTP
	// request.
	URL *url.URL
    ...
	// Body is the request's body.
	//
	// For client requests, a nil body means the request has no
	// body, such as a GET request. The HTTP Client's Transport
	// is responsible for calling the Close method.
	//
	// For server requests, the Request Body is always non-nil
	// but will return EOF immediately when no body is present.
	// The Server will close the request body. The ServeHTTP
	// Handler does not need to.
	Body io.ReadCloser
    ...
}

...
// Response represents the response from an HTTP request.
//
// The Client and Transport return Responses from servers once
// the response headers have been received. The response body
// is streamed on demand as the Body field is read.
type Response struct {
	Status     string // e.g. "200 OK"
	StatusCode int    // e.g. 200
	Proto      string // e.g. "HTTP/1.0"
	ProtoMajor int    // e.g. 1
	ProtoMinor int    // e.g. 0
    ...
}

这里Request和Response就是我们熟悉的HTTP请求和应答结构体

这里我们看demo对Transport的使用如下(net/http/transport.go):

client := &http.Client{
    Transport: &http.Transport{
        Proxy: http.ProxyFromEnvironment,
        DialContext: (&net.Dialer{
            Timeout:   30 * time.Second,
            KeepAlive: 30 * time.Second,
            DualStack: true,
        }).DialContext,
        MaxIdleConns:        100,
        MaxIdleConnsPerHost: 100,
        IdleConnTimeout:     90 * time.Second,
    },
}

...
// Transport is an implementation of RoundTripper that supports HTTP,
// HTTPS, and HTTP proxies (for either HTTP or HTTPS with CONNECT).
//
// By default, Transport caches connections for future re-use.
// This may leave many open connections when accessing many hosts.
// This behavior can be managed using Transport's CloseIdleConnections method
// and the MaxIdleConnsPerHost and DisableKeepAlives fields.
//
// Transports should be reused instead of created as needed.
// Transports are safe for concurrent use by multiple goroutines.
//
// A Transport is a low-level primitive for making HTTP and HTTPS requests.
// For high-level functionality, such as cookies and redirects, see Client.
//
// Transport uses HTTP/1.1 for HTTP URLs and either HTTP/1.1 or HTTP/2
// for HTTPS URLs, depending on whether the server supports HTTP/2,
// and how the Transport is configured. The DefaultTransport supports HTTP/2.
// To explicitly enable HTTP/2 on a transport, use golang.org/x/net/http2
// and call ConfigureTransport. See the package docs for more about HTTP/2.
//
// Responses with status codes in the 1xx range are either handled
// automatically (100 expect-continue) or ignored. The one
// exception is HTTP status code 101 (Switching Protocols), which is
// considered a terminal status and returned by RoundTrip. To see the
// ignored 1xx responses, use the httptrace trace package's
// ClientTrace.Got1xxResponse.
//
// Transport only retries a request upon encountering a network error
// if the request is idempotent and either has no body or has its
// Request.GetBody defined. HTTP requests are considered idempotent if
// they have HTTP methods GET, HEAD, OPTIONS, or TRACE; or if their
// Header map contains an "Idempotency-Key" or "X-Idempotency-Key"
// entry. If the idempotency key value is an zero-length slice, the
// request is treated as idempotent but the header is not sent on the
// wire.
type Transport struct {
	idleMu       sync.Mutex
	closeIdle    bool                                // user has requested to close all idle conns
	idleConn     map[connectMethodKey][]*persistConn // most recently used at end
	idleConnWait map[connectMethodKey]wantConnQueue  // waiting getConns
	idleLRU      connLRU

	reqMu       sync.Mutex
	reqCanceler map[*Request]func(error)

	altMu    sync.Mutex   // guards changing altProto only
	altProto atomic.Value // of nil or map[string]RoundTripper, key is URI scheme

	connsPerHostMu   sync.Mutex
	connsPerHost     map[connectMethodKey]int
	connsPerHostWait map[connectMethodKey]wantConnQueue // waiting getConns

	// Proxy specifies a function to return a proxy for a given
	// Request. If the function returns a non-nil error, the
	// request is aborted with the provided error.
	//
	// The proxy type is determined by the URL scheme. "http",
	// "https", and "socks5" are supported. If the scheme is empty,
	// "http" is assumed.
	//
	// If Proxy is nil or returns a nil *URL, no proxy is used.
	Proxy func(*Request) (*url.URL, error)

	// DialContext specifies the dial function for creating unencrypted TCP connections.
	// If DialContext is nil (and the deprecated Dial below is also nil),
	// then the transport dials using package net.
	//
	// DialContext runs concurrently with calls to RoundTrip.
	// A RoundTrip call that initiates a dial may end up using
	// a connection dialed previously when the earlier connection
	// becomes idle before the later DialContext completes.
	DialContext func(ctx context.Context, network, addr string) (net.Conn, error)

	// Dial specifies the dial function for creating unencrypted TCP connections.
	//
	// Dial runs concurrently with calls to RoundTrip.
	// A RoundTrip call that initiates a dial may end up using
	// a connection dialed previously when the earlier connection
	// becomes idle before the later Dial completes.
	//
	// Deprecated: Use DialContext instead, which allows the transport
	// to cancel dials as soon as they are no longer needed.
	// If both are set, DialContext takes priority.
	Dial func(network, addr string) (net.Conn, error)

	// DialTLS specifies an optional dial function for creating
	// TLS connections for non-proxied HTTPS requests.
	//
	// If DialTLS is nil, Dial and TLSClientConfig are used.
	//
	// If DialTLS is set, the Dial hook is not used for HTTPS
	// requests and the TLSClientConfig and TLSHandshakeTimeout
	// are ignored. The returned net.Conn is assumed to already be
	// past the TLS handshake.
	DialTLS func(network, addr string) (net.Conn, error)

	// TLSClientConfig specifies the TLS configuration to use with
	// tls.Client.
	// If nil, the default configuration is used.
	// If non-nil, HTTP/2 support may not be enabled by default.
	TLSClientConfig *tls.Config

	// TLSHandshakeTimeout specifies the maximum amount of time waiting to
	// wait for a TLS handshake. Zero means no timeout.
	TLSHandshakeTimeout time.Duration

	// DisableKeepAlives, if true, disables HTTP keep-alives and
	// will only use the connection to the server for a single
	// HTTP request.
	//
	// This is unrelated to the similarly named TCP keep-alives.
	DisableKeepAlives bool

	// DisableCompression, if true, prevents the Transport from
	// requesting compression with an "Accept-Encoding: gzip"
	// request header when the Request contains no existing
	// Accept-Encoding value. If the Transport requests gzip on
	// its own and gets a gzipped response, it's transparently
	// decoded in the Response.Body. However, if the user
	// explicitly requested gzip it is not automatically
	// uncompressed.
	DisableCompression bool

	// MaxIdleConns controls the maximum number of idle (keep-alive)
	// connections across all hosts. Zero means no limit.
	MaxIdleConns int

	// MaxIdleConnsPerHost, if non-zero, controls the maximum idle
	// (keep-alive) connections to keep per-host. If zero,
	// DefaultMaxIdleConnsPerHost is used.
	MaxIdleConnsPerHost int

	// MaxConnsPerHost optionally limits the total number of
	// connections per host, including connections in the dialing,
	// active, and idle states. On limit violation, dials will block.
	//
	// Zero means no limit.
	MaxConnsPerHost int

	// IdleConnTimeout is the maximum amount of time an idle
	// (keep-alive) connection will remain idle before closing
	// itself.
	// Zero means no limit.
	IdleConnTimeout time.Duration

	// ResponseHeaderTimeout, if non-zero, specifies the amount of
	// time to wait for a server's response headers after fully
	// writing the request (including its body, if any). This
	// time does not include the time to read the response body.
	ResponseHeaderTimeout time.Duration

	// ExpectContinueTimeout, if non-zero, specifies the amount of
	// time to wait for a server's first response headers after fully
	// writing the request headers if the request has an
	// "Expect: 100-continue" header. Zero means no timeout and
	// causes the body to be sent immediately, without
	// waiting for the server to approve.
	// This time does not include the time to send the request header.
	ExpectContinueTimeout time.Duration

	// TLSNextProto specifies how the Transport switches to an
	// alternate protocol (such as HTTP/2) after a TLS NPN/ALPN
	// protocol negotiation. If Transport dials an TLS connection
	// with a non-empty protocol name and TLSNextProto contains a
	// map entry for that key (such as "h2"), then the func is
	// called with the request's authority (such as "example.com"
	// or "example.com:1234") and the TLS connection. The function
	// must return a RoundTripper that then handles the request.
	// If TLSNextProto is not nil, HTTP/2 support is not enabled
	// automatically.
	TLSNextProto map[string]func(authority string, c *tls.Conn) RoundTripper

	// ProxyConnectHeader optionally specifies headers to send to
	// proxies during CONNECT requests.
	ProxyConnectHeader Header

	// MaxResponseHeaderBytes specifies a limit on how many
	// response bytes are allowed in the server's response
	// header.
	//
	// Zero means to use a default limit.
	MaxResponseHeaderBytes int64

	// WriteBufferSize specifies the size of the write buffer used
	// when writing to the transport.
	// If zero, a default (currently 4KB) is used.
	WriteBufferSize int

	// ReadBufferSize specifies the size of the read buffer used
	// when reading from the transport.
	// If zero, a default (currently 4KB) is used.
	ReadBufferSize int

	// nextProtoOnce guards initialization of TLSNextProto and
	// h2transport (via onceSetNextProtoDefaults)
	nextProtoOnce      sync.Once
	h2transport        h2Transport // non-nil if http2 wired up
	tlsNextProtoWasNil bool        // whether TLSNextProto was nil when the Once fired

	// ForceAttemptHTTP2 controls whether HTTP/2 is enabled when a non-zero
	// Dial, DialTLS, or DialContext func or TLSClientConfig is provided.
	// By default, use of any those fields conservatively disables HTTP/2.
	// To use a custom dialer or TLS config and still attempt HTTP/2
	// upgrades, set this to true.
	ForceAttemptHTTP2 bool
}

http.Transport实现了http.RoundTripper,支持HTTP,HTTPS以及HTTP Proxy(for either HTTP or HTTPS with CONNECT)

http.Transport默认实现了TCP连接池,会复用底层TCP连接。所以推荐的做法是初始化一次http.Transport,然后重复使用

http Transport对HTTP URLs使用HTTP/1.1协议;对HTTPS URLs使用HTTP/1.1 or HTTP/2,具体使用哪种协议要取决于Transport的配置以及服务端是否支持HTTP/2协议

Transport默认支持HTTP/2;如果要强制开启HTTP/2,使用ConfigureTransport,详细参考golang.org/x/net/http2

Transport只有在遇到网络故障的情况下会重试幂等的请求。另外,http Transport实现了goroutine-safe

接下来我们分析一下Transport各字段:

  • closeIdle:关闭所有空闲的连接
  • idleConn:空闲连接池
  • Proxy:对特定的请求返回代理
  • DialContext:指定底层TCP连接的创建函数
  • Dial(Deprecated):和DialContext一样的功能,区别在于DialContext多了一个context.Context参数,用于取消dials功能
  • DialTLS:为non-proxied HTTPS requests创建TLS connections
  • TLSHandshakeTimeout:TLS handshake超时时间
  • DisableKeepAlives:禁止HTTP keep-alives,一个连接只用于一次请求(注意区分TCP keep-alives。HTTP keep-alives用于连接复用;TCP keep-alives用于连接保活)
  • MaxIdleConns:控制所有hosts的空闲连接最大数目(Zero means no limit.)
  • MaxIdleConnsPerHost:控制某个host的空闲连接(keep-alives)最大数目(设置为0,则默认DefaultMaxIdleConnsPerHost=2)
  • MaxConnsPerHost:控制某个host的所有连接,包括创建中,正在使用的,以及空闲的连接(including connections in the dialing, active, and idle states)。一旦超过限制,dial会阻塞(Zero means no limit)
  • IdleConnTimeout:空闲连接(keep-alives)超时时间
  • h2transport:HTTP/2协议对应的transport
  • ForceAttemptHTTP2:当Dial, DialTLS, or DialContext func or TLSClientConfig提供时,默认情况下会禁止HTTP/2协议。当使用自定义的这些配置时,需要设置ForceAttemptHTTP2字段开启HTTP2

我们看一下DefaultTransport配置:

// DefaultTransport is the default implementation of Transport and is
// used by DefaultClient. It establishes network connections as needed
// and caches them for reuse by subsequent calls. It uses HTTP proxies
// as directed by the $HTTP_PROXY and $NO_PROXY (or $http_proxy and
// $no_proxy) environment variables.
var DefaultTransport RoundTripper = &Transport{
	Proxy: ProxyFromEnvironment,
	DialContext: (&net.Dialer{
		Timeout:   30 * time.Second,
		KeepAlive: 30 * time.Second,
		DualStack: true,
	}).DialContext,
	ForceAttemptHTTP2:     true,
	MaxIdleConns:          100,
	IdleConnTimeout:       90 * time.Second,
	TLSHandshakeTimeout:   10 * time.Second,
	ExpectContinueTimeout: 1 * time.Second,
}

重点看DialContext实例,展开net.Dialer结构体(net/dial.go):

// A Dialer contains options for connecting to an address.
//
// The zero value for each field is equivalent to dialing
// without that option. Dialing with the zero value of Dialer
// is therefore equivalent to just calling the Dial function.
type Dialer struct {
	// Timeout is the maximum amount of time a dial will wait for
	// a connect to complete. If Deadline is also set, it may fail
	// earlier.
	//
	// The default is no timeout.
	//
	// When using TCP and dialing a host name with multiple IP
	// addresses, the timeout may be divided between them.
	//
	// With or without a timeout, the operating system may impose
	// its own earlier timeout. For instance, TCP timeouts are
	// often around 3 minutes.
	Timeout time.Duration

	// Deadline is the absolute point in time after which dials
	// will fail. If Timeout is set, it may fail earlier.
	// Zero means no deadline, or dependent on the operating system
	// as with the Timeout option.
	Deadline time.Time

	// LocalAddr is the local address to use when dialing an
	// address. The address must be of a compatible type for the
	// network being dialed.
	// If nil, a local address is automatically chosen.
	LocalAddr Addr

	// DualStack previously enabled RFC 6555 Fast Fallback
	// support, also known as "Happy Eyeballs", in which IPv4 is
	// tried soon if IPv6 appears to be misconfigured and
	// hanging.
	//
	// Deprecated: Fast Fallback is enabled by default. To
	// disable, set FallbackDelay to a negative value.
	DualStack bool

	// FallbackDelay specifies the length of time to wait before
	// spawning a RFC 6555 Fast Fallback connection. That is, this
	// is the amount of time to wait for IPv6 to succeed before
	// assuming that IPv6 is misconfigured and falling back to
	// IPv4.
	//
	// If zero, a default delay of 300ms is used.
	// A negative value disables Fast Fallback support.
	FallbackDelay time.Duration

	// KeepAlive specifies the interval between keep-alive
	// probes for an active network connection.
	// If zero, keep-alive probes are sent with a default value
	// (currently 15 seconds), if supported by the protocol and operating
	// system. Network protocols or operating systems that do
	// not support keep-alives ignore this field.
	// If negative, keep-alive probes are disabled.
	KeepAlive time.Duration

	// Resolver optionally specifies an alternate resolver to use.
	Resolver *Resolver

	// Cancel is an optional channel whose closure indicates that
	// the dial should be canceled. Not all types of dials support
	// cancellation.
	//
	// Deprecated: Use DialContext instead.
	Cancel <-chan struct{}

	// If Control is not nil, it is called after creating the network
	// connection but before actually dialing.
	//
	// Network and address parameters passed to Control method are not
	// necessarily the ones passed to Dial. For example, passing "tcp" to Dial
	// will cause the Control function to be called with "tcp4" or "tcp6".
	Control func(network, address string, c syscall.RawConn) error
}

net.Dialer包含了创建TCP连接的各种选项:

  • Timeout:TCP连接建立的超时时间(也即三次握手的超时时间),操作系统的超时时间一般为3 minutes
  • Deadline:与Timeout作用类似,只不过限制了确定的超时时刻
  • LocalAddr:本地地址,TCP四元组的原始IP地址
  • DualStack(Deprecated):enabled RFC 6555 Fast Fallback Feature
  • FallbackDelay:IPv6连接建立的等待时间,如果超时,则会切换到IPv4(A negative value disables Fast Fallback support.)
  • KeepAlive:设置了活跃连接的TCP keep-alive探针间隔,需要协议层以及操作系统支持(If zero, keep-alive probes are sent with a default value(currently 15 seconds))
  • Control:it is called after creating the network connection but before actually dialing ?

接下来我们分析net.Dialer.DialContext,如下:

// Dial connects to the address on the named network.
//
// Known networks are "tcp", "tcp4" (IPv4-only), "tcp6" (IPv6-only),
// "udp", "udp4" (IPv4-only), "udp6" (IPv6-only), "ip", "ip4"
// (IPv4-only), "ip6" (IPv6-only), "unix", "unixgram" and
// "unixpacket".
//
// For TCP and UDP networks, the address has the form "host:port".
// The host must be a literal IP address, or a host name that can be
// resolved to IP addresses.
// The port must be a literal port number or a service name.
// If the host is a literal IPv6 address it must be enclosed in square
// brackets, as in "[2001:db8::1]:80" or "[fe80::1%zone]:80".
// The zone specifies the scope of the literal IPv6 address as defined
// in RFC 4007.
// The functions JoinHostPort and SplitHostPort manipulate a pair of
// host and port in this form.
// When using TCP, and the host resolves to multiple IP addresses,
// Dial will try each IP address in order until one succeeds.
//
// Examples:
//	Dial("tcp", "golang.org:http")
//	Dial("tcp", "192.0.2.1:http")
//	Dial("tcp", "198.51.100.1:80")
//	Dial("udp", "[2001:db8::1]:domain")
//	Dial("udp", "[fe80::1%lo0]:53")
//	Dial("tcp", ":80")
//
// For IP networks, the network must be "ip", "ip4" or "ip6" followed
// by a colon and a literal protocol number or a protocol name, and
// the address has the form "host". The host must be a literal IP
// address or a literal IPv6 address with zone.
// It depends on each operating system how the operating system
// behaves with a non-well known protocol number such as "0" or "255".
//
// Examples:
//	Dial("ip4:1", "192.0.2.1")
//	Dial("ip6:ipv6-icmp", "2001:db8::1")
//	Dial("ip6:58", "fe80::1%lo0")
//
// For TCP, UDP and IP networks, if the host is empty or a literal
// unspecified IP address, as in ":80", "0.0.0.0:80" or "[::]:80" for
// TCP and UDP, "", "0.0.0.0" or "::" for IP, the local system is
// assumed.
//
// For Unix networks, the address must be a file system path.
func Dial(network, address string) (Conn, error) {
	var d Dialer
	return d.Dial(network, address)
}

...

// DialContext connects to the address on the named network using
// the provided context.
//
// The provided Context must be non-nil. If the context expires before
// the connection is complete, an error is returned. Once successfully
// connected, any expiration of the context will not affect the
// connection.
//
// When using TCP, and the host in the address parameter resolves to multiple
// network addresses, any dial timeout (from d.Timeout or ctx) is spread
// over each consecutive dial, such that each is given an appropriate
// fraction of the time to connect.
// For example, if a host has 4 IP addresses and the timeout is 1 minute,
// the connect to each single address will be given 15 seconds to complete
// before trying the next one.
//
// See func Dial for a description of the network and address
// parameters.
func (d *Dialer) DialContext(ctx context.Context, network, address string) (Conn, error) {
	if ctx == nil {
		panic("nil context")
	}
	deadline := d.deadline(ctx, time.Now())
	if !deadline.IsZero() {
		if d, ok := ctx.Deadline(); !ok || deadline.Before(d) {
			subCtx, cancel := context.WithDeadline(ctx, deadline)
			defer cancel()
			ctx = subCtx
		}
	}
	if oldCancel := d.Cancel; oldCancel != nil {
		subCtx, cancel := context.WithCancel(ctx)
		defer cancel()
		go func() {
			select {
			case <-oldCancel:
				cancel()
			case <-subCtx.Done():
			}
		}()
		ctx = subCtx
	}

	// Shadow the nettrace (if any) during resolve so Connect events don't fire for DNS lookups.
	resolveCtx := ctx
	if trace, _ := ctx.Value(nettrace.TraceKey{}).(*nettrace.Trace); trace != nil {
		shadow := *trace
		shadow.ConnectStart = nil
		shadow.ConnectDone = nil
		resolveCtx = context.WithValue(resolveCtx, nettrace.TraceKey{}, &shadow)
	}

	addrs, err := d.resolver().resolveAddrList(resolveCtx, "dial", network, address, d.LocalAddr)
	if err != nil {
		return nil, &OpError{Op: "dial", Net: network, Source: nil, Addr: nil, Err: err}
	}

	sd := &sysDialer{
		Dialer:  *d,
		network: network,
		address: address,
	}

	var primaries, fallbacks addrList
	if d.dualStack() && network == "tcp" {
		primaries, fallbacks = addrs.partition(isIPv4)
	} else {
		primaries = addrs
	}

	var c Conn
	if len(fallbacks) > 0 {
		c, err = sd.dialParallel(ctx, primaries, fallbacks)
	} else {
		c, err = sd.dialSerial(ctx, primaries)
	}
	if err != nil {
		return nil, err
	}

	if tc, ok := c.(*TCPConn); ok && d.KeepAlive >= 0 {
		setKeepAlive(tc.fd, true)
		ka := d.KeepAlive
		if d.KeepAlive == 0 {
			ka = defaultTCPKeepAlive
		}
		setKeepAlivePeriod(tc.fd, ka)
		testHookSetKeepAlive(ka)
	}
	return c, nil
}

DialContext用于创建指定网络协议(例如tcp,udp)以及指定地址的连接,例如:

// Examples:
//	Dial("tcp", "golang.org:http")
//	Dial("tcp", "192.0.2.1:http")
//	Dial("tcp", "198.51.100.1:80")
//	Dial("udp", "[2001:db8::1]:domain")
//	Dial("udp", "[fe80::1%lo0]:53")
//	Dial("tcp", ":80")

分为三个阶段,如下:

  • 1、resolveAddrList
// resolveAddrList resolves addr using hint and returns a list of
// addresses. The result contains at least one address when error is
// nil.
func (r *Resolver) resolveAddrList(ctx context.Context, op, network, addr string, hint Addr) (addrList, error) {
	afnet, _, err := parseNetwork(ctx, network, true)
	if err != nil {
		return nil, err
	}
	if op == "dial" && addr == "" {
		return nil, errMissingAddress
	}
	switch afnet {
	case "unix", "unixgram", "unixpacket":
		addr, err := ResolveUnixAddr(afnet, addr)
		if err != nil {
			return nil, err
		}
		if op == "dial" && hint != nil && addr.Network() != hint.Network() {
			return nil, &AddrError{Err: "mismatched local address type", Addr: hint.String()}
		}
		return addrList{addr}, nil
	}
	addrs, err := r.internetAddrList(ctx, afnet, addr)
	if err != nil || op != "dial" || hint == nil {
		return addrs, err
	}
	var (
		tcp      *TCPAddr
		udp      *UDPAddr
		ip       *IPAddr
		wildcard bool
	)
	switch hint := hint.(type) {
	case *TCPAddr:
		tcp = hint
		wildcard = tcp.isWildcard()
	case *UDPAddr:
		udp = hint
		wildcard = udp.isWildcard()
	case *IPAddr:
		ip = hint
		wildcard = ip.isWildcard()
	}
	naddrs := addrs[:0]
	for _, addr := range addrs {
		if addr.Network() != hint.Network() {
			return nil, &AddrError{Err: "mismatched local address type", Addr: hint.String()}
		}
		switch addr := addr.(type) {
		case *TCPAddr:
			if !wildcard && !addr.isWildcard() && !addr.IP.matchAddrFamily(tcp.IP) {
				continue
			}
			naddrs = append(naddrs, addr)
		case *UDPAddr:
			if !wildcard && !addr.isWildcard() && !addr.IP.matchAddrFamily(udp.IP) {
				continue
			}
			naddrs = append(naddrs, addr)
		case *IPAddr:
			if !wildcard && !addr.isWildcard() && !addr.IP.matchAddrFamily(ip.IP) {
				continue
			}
			naddrs = append(naddrs, addr)
		}
	}
	if len(naddrs) == 0 {
		return nil, &AddrError{Err: errNoSuitableAddress.Error(), Addr: hint.String()}
	}
	return naddrs, nil
}

// An addrList represents a list of network endpoint addresses.
type addrList []Addr

// Addr represents a network end point address.
//
// The two methods Network and String conventionally return strings
// that can be passed as the arguments to Dial, but the exact form
// and meaning of the strings is up to the implementation.
type Addr interface {
	Network() string // name of the network (for example, "tcp", "udp")
	String() string  // string form of address (for example, "192.0.2.1:25", "[2001:db8::1]:80")
}

根据本地地址网路类型以及地址族分拆目标地址,返回地址列表

  • 2、dialSerial
// isIPv4 reports whether addr contains an IPv4 address.
func isIPv4(addr Addr) bool {
	switch addr := addr.(type) {
	case *TCPAddr:
		return addr.IP.To4() != nil
	case *UDPAddr:
		return addr.IP.To4() != nil
	case *IPAddr:
		return addr.IP.To4() != nil
	}
	return false
}

// partition divides an address list into two categories, using a
// strategy function to assign a boolean label to each address.
// The first address, and any with a matching label, are returned as
// primaries, while addresses with the opposite label are returned
// as fallbacks. For non-empty inputs, primaries is guaranteed to be
// non-empty.
func (addrs addrList) partition(strategy func(Addr) bool) (primaries, fallbacks addrList) {
	var primaryLabel bool
	for i, addr := range addrs {
		label := strategy(addr)
		if i == 0 || label == primaryLabel {
			primaryLabel = label
			primaries = append(primaries, addr)
		} else {
			fallbacks = append(fallbacks, addr)
		}
	}
	return
}

...
sd := &sysDialer{
    Dialer:  *d,
    network: network,
    address: address,
}

...
// dialSerial connects to a list of addresses in sequence, returning
// either the first successful connection, or the first error.
func (sd *sysDialer) dialSerial(ctx context.Context, ras addrList) (Conn, error) {
	var firstErr error // The error from the first address is most relevant.

	for i, ra := range ras {
		select {
		case <-ctx.Done():
			return nil, &OpError{Op: "dial", Net: sd.network, Source: sd.LocalAddr, Addr: ra, Err: mapErr(ctx.Err())}
		default:
		}

		deadline, _ := ctx.Deadline()
		partialDeadline, err := partialDeadline(time.Now(), deadline, len(ras)-i)
		if err != nil {
			// Ran out of time.
			if firstErr == nil {
				firstErr = &OpError{Op: "dial", Net: sd.network, Source: sd.LocalAddr, Addr: ra, Err: err}
			}
			break
		}
		dialCtx := ctx
		if partialDeadline.Before(deadline) {
			var cancel context.CancelFunc
			dialCtx, cancel = context.WithDeadline(ctx, partialDeadline)
			defer cancel()
		}

		c, err := sd.dialSingle(dialCtx, ra)
		if err == nil {
			return c, nil
		}
		if firstErr == nil {
			firstErr = err
		}
	}

	if firstErr == nil {
		firstErr = &OpError{Op: "dial", Net: sd.network, Source: nil, Addr: nil, Err: errMissingAddress}
	}
	return nil, firstErr
}

// dialSingle attempts to establish and returns a single connection to
// the destination address.
func (sd *sysDialer) dialSingle(ctx context.Context, ra Addr) (c Conn, err error) {
	trace, _ := ctx.Value(nettrace.TraceKey{}).(*nettrace.Trace)
	if trace != nil {
		raStr := ra.String()
		if trace.ConnectStart != nil {
			trace.ConnectStart(sd.network, raStr)
		}
		if trace.ConnectDone != nil {
			defer func() { trace.ConnectDone(sd.network, raStr, err) }()
		}
	}
	la := sd.LocalAddr
	switch ra := ra.(type) {
	case *TCPAddr:
		la, _ := la.(*TCPAddr)
		c, err = sd.dialTCP(ctx, la, ra)
	case *UDPAddr:
		la, _ := la.(*UDPAddr)
		c, err = sd.dialUDP(ctx, la, ra)
	case *IPAddr:
		la, _ := la.(*IPAddr)
		c, err = sd.dialIP(ctx, la, ra)
	case *UnixAddr:
		la, _ := la.(*UnixAddr)
		c, err = sd.dialUnix(ctx, la, ra)
	default:
		return nil, &OpError{Op: "dial", Net: sd.network, Source: la, Addr: ra, Err: &AddrError{Err: "unexpected address type", Addr: sd.address}}
	}
	if err != nil {
		return nil, &OpError{Op: "dial", Net: sd.network, Source: la, Addr: ra, Err: err} // c is non-nil interface containing nil pointer
	}
	return c, nil
}

func (sd *sysDialer) dialTCP(ctx context.Context, laddr, raddr *TCPAddr) (*TCPConn, error) {
	if testHookDialTCP != nil {
		return testHookDialTCP(ctx, sd.network, laddr, raddr)
	}
	return sd.doDialTCP(ctx, laddr, raddr)
}

// net/tcpsock_posix.go
func (sd *sysDialer) doDialTCP(ctx context.Context, laddr, raddr *TCPAddr) (*TCPConn, error) {
	fd, err := internetSocket(ctx, sd.network, laddr, raddr, syscall.SOCK_STREAM, 0, "dial", sd.Dialer.Control)

	// TCP has a rarely used mechanism called a 'simultaneous connection' in
	// which Dial("tcp", addr1, addr2) run on the machine at addr1 can
	// connect to a simultaneous Dial("tcp", addr2, addr1) run on the machine
	// at addr2, without either machine executing Listen. If laddr == nil,
	// it means we want the kernel to pick an appropriate originating local
	// address. Some Linux kernels cycle blindly through a fixed range of
	// local ports, regardless of destination port. If a kernel happens to
	// pick local port 50001 as the source for a Dial("tcp", "", "localhost:50001"),
	// then the Dial will succeed, having simultaneously connected to itself.
	// This can only happen when we are letting the kernel pick a port (laddr == nil)
	// and when there is no listener for the destination address.
	// It's hard to argue this is anything other than a kernel bug. If we
	// see this happen, rather than expose the buggy effect to users, we
	// close the fd and try again. If it happens twice more, we relent and
	// use the result. See also:
	//	https://golang.org/issue/2690
	//	https://stackoverflow.com/questions/4949858/
	//
	// The opposite can also happen: if we ask the kernel to pick an appropriate
	// originating local address, sometimes it picks one that is already in use.
	// So if the error is EADDRNOTAVAIL, we have to try again too, just for
	// a different reason.
	//
	// The kernel socket code is no doubt enjoying watching us squirm.
	for i := 0; i < 2 && (laddr == nil || laddr.Port == 0) && (selfConnect(fd, err) || spuriousENOTAVAIL(err)); i++ {
		if err == nil {
			fd.Close()
		}
		fd, err = internetSocket(ctx, sd.network, laddr, raddr, syscall.SOCK_STREAM, 0, "dial", sd.Dialer.Control)
	}

	if err != nil {
		return nil, err
	}
	return newTCPConn(fd), nil
}

func internetSocket(ctx context.Context, net string, laddr, raddr sockaddr, sotype, proto int, mode string, ctrlFn func(string, string, syscall.RawConn) error) (fd *netFD, err error) {
	if (runtime.GOOS == "aix" || runtime.GOOS == "windows" || runtime.GOOS == "openbsd" || runtime.GOOS == "nacl") && mode == "dial" && raddr.isWildcard() {
		raddr = raddr.toLocal(net)
	}
	family, ipv6only := favoriteAddrFamily(net, laddr, raddr, mode)
	return socket(ctx, net, family, sotype, proto, ipv6only, laddr, raddr, ctrlFn)
}

// socket returns a network file descriptor that is ready for
// asynchronous I/O using the network poller.
func socket(ctx context.Context, net string, family, sotype, proto int, ipv6only bool, laddr, raddr sockaddr, ctrlFn func(string, string, syscall.RawConn) error) (fd *netFD, err error) {
	s, err := sysSocket(family, sotype, proto)
	if err != nil {
		return nil, err
	}
	if err = setDefaultSockopts(s, family, sotype, ipv6only); err != nil {
		poll.CloseFunc(s)
		return nil, err
	}
	if fd, err = newFD(s, family, sotype, net); err != nil {
		poll.CloseFunc(s)
		return nil, err
	}

	// This function makes a network file descriptor for the
	// following applications:
	//
	// - An endpoint holder that opens a passive stream
	//   connection, known as a stream listener
	//
	// - An endpoint holder that opens a destination-unspecific
	//   datagram connection, known as a datagram listener
	//
	// - An endpoint holder that opens an active stream or a
	//   destination-specific datagram connection, known as a
	//   dialer
	//
	// - An endpoint holder that opens the other connection, such
	//   as talking to the protocol stack inside the kernel
	//
	// For stream and datagram listeners, they will only require
	// named sockets, so we can assume that it's just a request
	// from stream or datagram listeners when laddr is not nil but
	// raddr is nil. Otherwise we assume it's just for dialers or
	// the other connection holders.

	if laddr != nil && raddr == nil {
		switch sotype {
		case syscall.SOCK_STREAM, syscall.SOCK_SEQPACKET:
			if err := fd.listenStream(laddr, listenerBacklog(), ctrlFn); err != nil {
				fd.Close()
				return nil, err
			}
			return fd, nil
		case syscall.SOCK_DGRAM:
			if err := fd.listenDatagram(laddr, ctrlFn); err != nil {
				fd.Close()
				return nil, err
			}
			return fd, nil
		}
	}
	if err := fd.dial(ctx, laddr, raddr, ctrlFn); err != nil {
		fd.Close()
		return nil, err
	}
	return fd, nil
}

func newFD(sysfd, family, sotype int, net string) (*netFD, error) {
	ret := &netFD{
		pfd: poll.FD{
			Sysfd:         sysfd,
			IsStream:      sotype == syscall.SOCK_STREAM,
			ZeroReadIsEOF: sotype != syscall.SOCK_DGRAM && sotype != syscall.SOCK_RAW,
		},
		family: family,
		sotype: sotype,
		net:    net,
	}
	return ret, nil
}

// Network file descriptor.
type netFD struct {
	pfd poll.FD

	// immutable until Close
	family      int
	sotype      int
	isConnected bool // handshake completed or use of association with peer
	net         string
	laddr       Addr
	raddr       Addr
}

func newTCPConn(fd *netFD) *TCPConn {
	c := &TCPConn{conn{fd}}
	setNoDelay(c.fd, true)
	return c
}

// TCPConn is an implementation of the Conn interface for TCP network
// connections.
type TCPConn struct {
	conn
}

type conn struct {
	fd *netFD
}

对resolveAddrList返回的地址依次尝试创建连接,返回第一个创建成功的连接,否则返回第一个错误

  • 3、setKeepAlive

创建完连接后,检查该连接是否为TCP连接,如果是TCP连接,则设置KeepAlive时间,如下(net/sockopt_posix.go):

...
if tc, ok := c.(*TCPConn); ok && d.KeepAlive >= 0 {
    setKeepAlive(tc.fd, true)
    ka := d.KeepAlive
    if d.KeepAlive == 0 {
        ka = defaultTCPKeepAlive
    }
    setKeepAlivePeriod(tc.fd, ka)
    testHookSetKeepAlive(ka)
}

...
func setKeepAlive(fd *netFD, keepalive bool) error {
	err := fd.pfd.SetsockoptInt(syscall.SOL_SOCKET, syscall.SO_KEEPALIVE, boolint(keepalive))
	runtime.KeepAlive(fd)
	return wrapSyscallError("setsockopt", err)
}

...
// net/tcpsockopt_darwin.go
func setKeepAlivePeriod(fd *netFD, d time.Duration) error {
	// The kernel expects seconds so round to next highest second.
	d += (time.Second - time.Nanosecond)
	secs := int(d.Seconds())
	if err := fd.pfd.SetsockoptInt(syscall.IPPROTO_TCP, sysTCP_KEEPINTVL, secs); err != nil {
		return wrapSyscallError("setsockopt", err)
	}
	err := fd.pfd.SetsockoptInt(syscall.IPPROTO_TCP, syscall.TCP_KEEPALIVE, secs)
	runtime.KeepAlive(fd)
	return wrapSyscallError("setsockopt", err)
}

// defaultTCPKeepAlive is a default constant value for TCPKeepAlive times
// See golang.org/issue/31510
const (
	defaultTCPKeepAlive = 15 * time.Second
)

Transport.IdleConnTimeout与net.Dialer.KeepAlive有什么关系,哪一个是所谓的HTTP keep-alives???

回到最开始的http.Client的使用:

// construct encoded endpoint
Url, err := url.Parse(fmt.Sprintf("http://%s:%d", addr, port))
if err != nil {
    return err
}
Url.Path += "/index"
endpoint := Url.String()
req, err := http.NewRequest("GET", endpoint, nil)
if err != nil {
    return err
}
// use httpClient to send request
rsp, err := client.Do(req)
if err != nil {
    return err
}
// close the connection to reuse it
defer rsp.Body.Close()
// check status code
if rsp.StatusCode != http.StatusOK {
    return fmt.Errorf("get rsp error: %v", rsp)
}

我们分析http.Client是如何使用http.Transport的:

一、创建http.Request

根据method,url,body创建http.Request:

// NewRequest wraps NewRequestWithContext using the background context.
func NewRequest(method, url string, body io.Reader) (*Request, error) {
	return NewRequestWithContext(context.Background(), method, url, body)
}

// NewRequestWithContext returns a new Request given a method, URL, and
// optional body.
//
// If the provided body is also an io.Closer, the returned
// Request.Body is set to body and will be closed by the Client
// methods Do, Post, and PostForm, and Transport.RoundTrip.
//
// NewRequestWithContext returns a Request suitable for use with
// Client.Do or Transport.RoundTrip. To create a request for use with
// testing a Server Handler, either use the NewRequest function in the
// net/http/httptest package, use ReadRequest, or manually update the
// Request fields. For an outgoing client request, the context
// controls the entire lifetime of a request and its response:
// obtaining a connection, sending the request, and reading the
// response headers and body. See the Request type's documentation for
// the difference between inbound and outbound request fields.
//
// If body is of type *bytes.Buffer, *bytes.Reader, or
// *strings.Reader, the returned request's ContentLength is set to its
// exact value (instead of -1), GetBody is populated (so 307 and 308
// redirects can replay the body), and Body is set to NoBody if the
// ContentLength is 0.
func NewRequestWithContext(ctx context.Context, method, url string, body io.Reader) (*Request, error) {
	if method == "" {
		// We document that "" means "GET" for Request.Method, and people have
		// relied on that from NewRequest, so keep that working.
		// We still enforce validMethod for non-empty methods.
		method = "GET"
	}
	if !validMethod(method) {
		return nil, fmt.Errorf("net/http: invalid method %q", method)
	}
	if ctx == nil {
		return nil, errors.New("net/http: nil Context")
	}
	u, err := parseURL(url) // Just url.Parse (url is shadowed for godoc).
	if err != nil {
		return nil, err
	}
	rc, ok := body.(io.ReadCloser)
	if !ok && body != nil {
		rc = ioutil.NopCloser(body)
	}
	// The host's colon:port should be normalized. See Issue 14836.
	u.Host = removeEmptyPort(u.Host)
	req := &Request{
		ctx:        ctx,
		Method:     method,
		URL:        u,
		Proto:      "HTTP/1.1",
		ProtoMajor: 1,
		ProtoMinor: 1,
		Header:     make(Header),
		Body:       rc,
		Host:       u.Host,
	}
	if body != nil {
		switch v := body.(type) {
		case *bytes.Buffer:
			req.ContentLength = int64(v.Len())
			buf := v.Bytes()
			req.GetBody = func() (io.ReadCloser, error) {
				r := bytes.NewReader(buf)
				return ioutil.NopCloser(r), nil
			}
		case *bytes.Reader:
			req.ContentLength = int64(v.Len())
			snapshot := *v
			req.GetBody = func() (io.ReadCloser, error) {
				r := snapshot
				return ioutil.NopCloser(&r), nil
			}
		case *strings.Reader:
			req.ContentLength = int64(v.Len())
			snapshot := *v
			req.GetBody = func() (io.ReadCloser, error) {
				r := snapshot
				return ioutil.NopCloser(&r), nil
			}
		default:
			// This is where we'd set it to -1 (at least
			// if body != NoBody) to mean unknown, but
			// that broke people during the Go 1.8 testing
			// period. People depend on it being 0 I
			// guess. Maybe retry later. See Issue 18117.
		}
		// For client requests, Request.ContentLength of 0
		// means either actually 0, or unknown. The only way
		// to explicitly say that the ContentLength is zero is
		// to set the Body to nil. But turns out too much code
		// depends on NewRequest returning a non-nil Body,
		// so we use a well-known ReadCloser variable instead
		// and have the http package also treat that sentinel
		// variable to mean explicitly zero.
		if req.GetBody != nil && req.ContentLength == 0 {
			req.Body = NoBody
			req.GetBody = func() (io.ReadCloser, error) { return NoBody, nil }
		}
	}

	return req, nil
}

// A Request represents an HTTP request received by a server
// or to be sent by a client.
//
// The field semantics differ slightly between client and server
// usage. In addition to the notes on the fields below, see the
// documentation for Request.Write and RoundTripper.
type Request struct {
	// Method specifies the HTTP method (GET, POST, PUT, etc.).
	// For client requests, an empty string means GET.
	//
	// Go's HTTP client does not support sending a request with
	// the CONNECT method. See the documentation on Transport for
	// details.
	Method string

	// URL specifies either the URI being requested (for server
	// requests) or the URL to access (for client requests).
	//
	// For server requests, the URL is parsed from the URI
	// supplied on the Request-Line as stored in RequestURI.  For
	// most requests, fields other than Path and RawQuery will be
	// empty. (See RFC 7230, Section 5.3)
	//
	// For client requests, the URL's Host specifies the server to
	// connect to, while the Request's Host field optionally
	// specifies the Host header value to send in the HTTP
	// request.
	URL *url.URL

	// The protocol version for incoming server requests.
	//
	// For client requests, these fields are ignored. The HTTP
	// client code always uses either HTTP/1.1 or HTTP/2.
	// See the docs on Transport for details.
	Proto      string // "HTTP/1.0"
	ProtoMajor int    // 1
	ProtoMinor int    // 0

	// Header contains the request header fields either received
	// by the server or to be sent by the client.
	//
	// If a server received a request with header lines,
	//
	//	Host: example.com
	//	accept-encoding: gzip, deflate
	//	Accept-Language: en-us
	//	fOO: Bar
	//	foo: two
	//
	// then
	//
	//	Header = map[string][]string{
	//		"Accept-Encoding": {"gzip, deflate"},
	//		"Accept-Language": {"en-us"},
	//		"Foo": {"Bar", "two"},
	//	}
	//
	// For incoming requests, the Host header is promoted to the
	// Request.Host field and removed from the Header map.
	//
	// HTTP defines that header names are case-insensitive. The
	// request parser implements this by using CanonicalHeaderKey,
	// making the first character and any characters following a
	// hyphen uppercase and the rest lowercase.
	//
	// For client requests, certain headers such as Content-Length
	// and Connection are automatically written when needed and
	// values in Header may be ignored. See the documentation
	// for the Request.Write method.
	Header Header

	// Body is the request's body.
	//
	// For client requests, a nil body means the request has no
	// body, such as a GET request. The HTTP Client's Transport
	// is responsible for calling the Close method.
	//
	// For server requests, the Request Body is always non-nil
	// but will return EOF immediately when no body is present.
	// The Server will close the request body. The ServeHTTP
	// Handler does not need to.
	Body io.ReadCloser

	// GetBody defines an optional func to return a new copy of
	// Body. It is used for client requests when a redirect requires
	// reading the body more than once. Use of GetBody still
	// requires setting Body.
	//
	// For server requests, it is unused.
	GetBody func() (io.ReadCloser, error)

	// ContentLength records the length of the associated content.
	// The value -1 indicates that the length is unknown.
	// Values >= 0 indicate that the given number of bytes may
	// be read from Body.
	//
	// For client requests, a value of 0 with a non-nil Body is
	// also treated as unknown.
	ContentLength int64

	// TransferEncoding lists the transfer encodings from outermost to
	// innermost. An empty list denotes the "identity" encoding.
	// TransferEncoding can usually be ignored; chunked encoding is
	// automatically added and removed as necessary when sending and
	// receiving requests.
	TransferEncoding []string

	// Close indicates whether to close the connection after
	// replying to this request (for servers) or after sending this
	// request and reading its response (for clients).
	//
	// For server requests, the HTTP server handles this automatically
	// and this field is not needed by Handlers.
	//
	// For client requests, setting this field prevents re-use of
	// TCP connections between requests to the same hosts, as if
	// Transport.DisableKeepAlives were set.
	Close bool

	// For server requests, Host specifies the host on which the URL
	// is sought. Per RFC 7230, section 5.4, this is either the value
	// of the "Host" header or the host name given in the URL itself.
	// It may be of the form "host:port". For international domain
	// names, Host may be in Punycode or Unicode form. Use
	// golang.org/x/net/idna to convert it to either format if
	// needed.
	// To prevent DNS rebinding attacks, server Handlers should
	// validate that the Host header has a value for which the
	// Handler considers itself authoritative. The included
	// ServeMux supports patterns registered to particular host
	// names and thus protects its registered Handlers.
	//
	// For client requests, Host optionally overrides the Host
	// header to send. If empty, the Request.Write method uses
	// the value of URL.Host. Host may contain an international
	// domain name.
	Host string

	// Form contains the parsed form data, including both the URL
	// field's query parameters and the PATCH, POST, or PUT form data.
	// This field is only available after ParseForm is called.
	// The HTTP client ignores Form and uses Body instead.
	Form url.Values

	// PostForm contains the parsed form data from PATCH, POST
	// or PUT body parameters.
	//
	// This field is only available after ParseForm is called.
	// The HTTP client ignores PostForm and uses Body instead.
	PostForm url.Values

	// MultipartForm is the parsed multipart form, including file uploads.
	// This field is only available after ParseMultipartForm is called.
	// The HTTP client ignores MultipartForm and uses Body instead.
	MultipartForm *multipart.Form

	// Trailer specifies additional headers that are sent after the request
	// body.
	//
	// For server requests, the Trailer map initially contains only the
	// trailer keys, with nil values. (The client declares which trailers it
	// will later send.)  While the handler is reading from Body, it must
	// not reference Trailer. After reading from Body returns EOF, Trailer
	// can be read again and will contain non-nil values, if they were sent
	// by the client.
	//
	// For client requests, Trailer must be initialized to a map containing
	// the trailer keys to later send. The values may be nil or their final
	// values. The ContentLength must be 0 or -1, to send a chunked request.
	// After the HTTP request is sent the map values can be updated while
	// the request body is read. Once the body returns EOF, the caller must
	// not mutate Trailer.
	//
	// Few HTTP clients, servers, or proxies support HTTP trailers.
	Trailer Header

	// RemoteAddr allows HTTP servers and other software to record
	// the network address that sent the request, usually for
	// logging. This field is not filled in by ReadRequest and
	// has no defined format. The HTTP server in this package
	// sets RemoteAddr to an "IP:port" address before invoking a
	// handler.
	// This field is ignored by the HTTP client.
	RemoteAddr string

	// RequestURI is the unmodified request-target of the
	// Request-Line (RFC 7230, Section 3.1.1) as sent by the client
	// to a server. Usually the URL field should be used instead.
	// It is an error to set this field in an HTTP client request.
	RequestURI string

	// TLS allows HTTP servers and other software to record
	// information about the TLS connection on which the request
	// was received. This field is not filled in by ReadRequest.
	// The HTTP server in this package sets the field for
	// TLS-enabled connections before invoking a handler;
	// otherwise it leaves the field nil.
	// This field is ignored by the HTTP client.
	TLS *tls.ConnectionState

	// Cancel is an optional channel whose closure indicates that the client
	// request should be regarded as canceled. Not all implementations of
	// RoundTripper may support Cancel.
	//
	// For server requests, this field is not applicable.
	//
	// Deprecated: Set the Request's context with NewRequestWithContext
	// instead. If a Request's Cancel field and context are both
	// set, it is undefined whether Cancel is respected.
	Cancel <-chan struct{}

	// Response is the redirect response which caused this request
	// to be created. This field is only populated during client
	// redirects.
	Response *Response

	// ctx is either the client or server context. It should only
	// be modified via copying the whole Request using WithContext.
	// It is unexported to prevent people from using Context wrong
	// and mutating the contexts held by callers of the same request.
	ctx context.Context
}

二、client.Do(req)

使用http.Client发送请求,如下:

// Do sends an HTTP request and returns an HTTP response, following
// policy (such as redirects, cookies, auth) as configured on the
// client.
//
// An error is returned if caused by client policy (such as
// CheckRedirect), or failure to speak HTTP (such as a network
// connectivity problem). A non-2xx status code doesn't cause an
// error.
//
// If the returned error is nil, the Response will contain a non-nil
// Body which the user is expected to close. If the Body is not both
// read to EOF and closed, the Client's underlying RoundTripper
// (typically Transport) may not be able to re-use a persistent TCP
// connection to the server for a subsequent "keep-alive" request.
//
// The request Body, if non-nil, will be closed by the underlying
// Transport, even on errors.
//
// On error, any Response can be ignored. A non-nil Response with a
// non-nil error only occurs when CheckRedirect fails, and even then
// the returned Response.Body is already closed.
//
// Generally Get, Post, or PostForm will be used instead of Do.
//
// If the server replies with a redirect, the Client first uses the
// CheckRedirect function to determine whether the redirect should be
// followed. If permitted, a 301, 302, or 303 redirect causes
// subsequent requests to use HTTP method GET
// (or HEAD if the original request was HEAD), with no body.
// A 307 or 308 redirect preserves the original HTTP method and body,
// provided that the Request.GetBody function is defined.
// The NewRequest function automatically sets GetBody for common
// standard library body types.
//
// Any returned error will be of type *url.Error. The url.Error
// value's Timeout method will report true if request timed out or was
// canceled.
func (c *Client) Do(req *Request) (*Response, error) {
	return c.do(req)
}

func (c *Client) do(req *Request) (retres *Response, reterr error) {
	if testHookClientDoResult != nil {
		defer func() { testHookClientDoResult(retres, reterr) }()
	}
	if req.URL == nil {
		req.closeBody()
		return nil, &url.Error{
			Op:  urlErrorOp(req.Method),
			Err: errors.New("http: nil Request.URL"),
		}
	}

	var (
		deadline      = c.deadline()
		reqs          []*Request
		resp          *Response
		copyHeaders   = c.makeHeadersCopier(req)
		reqBodyClosed = false // have we closed the current req.Body?

		// Redirect behavior:
		redirectMethod string
		includeBody    bool
	)
	uerr := func(err error) error {
		// the body may have been closed already by c.send()
		if !reqBodyClosed {
			req.closeBody()
		}
		var urlStr string
		if resp != nil && resp.Request != nil {
			urlStr = stripPassword(resp.Request.URL)
		} else {
			urlStr = stripPassword(req.URL)
		}
		return &url.Error{
			Op:  urlErrorOp(reqs[0].Method),
			URL: urlStr,
			Err: err,
		}
	}
	for {
		// For all but the first request, create the next
		// request hop and replace req.
		if len(reqs) > 0 {
			loc := resp.Header.Get("Location")
			if loc == "" {
				resp.closeBody()
				return nil, uerr(fmt.Errorf("%d response missing Location header", resp.StatusCode))
			}
			u, err := req.URL.Parse(loc)
			if err != nil {
				resp.closeBody()
				return nil, uerr(fmt.Errorf("failed to parse Location header %q: %v", loc, err))
			}
			host := ""
			if req.Host != "" && req.Host != req.URL.Host {
				// If the caller specified a custom Host header and the
				// redirect location is relative, preserve the Host header
				// through the redirect. See issue #22233.
				if u, _ := url.Parse(loc); u != nil && !u.IsAbs() {
					host = req.Host
				}
			}
			ireq := reqs[0]
			req = &Request{
				Method:   redirectMethod,
				Response: resp,
				URL:      u,
				Header:   make(Header),
				Host:     host,
				Cancel:   ireq.Cancel,
				ctx:      ireq.ctx,
			}
			if includeBody && ireq.GetBody != nil {
				req.Body, err = ireq.GetBody()
				if err != nil {
					resp.closeBody()
					return nil, uerr(err)
				}
				req.ContentLength = ireq.ContentLength
			}

			// Copy original headers before setting the Referer,
			// in case the user set Referer on their first request.
			// If they really want to override, they can do it in
			// their CheckRedirect func.
			copyHeaders(req)

			// Add the Referer header from the most recent
			// request URL to the new one, if it's not https->http:
			if ref := refererForURL(reqs[len(reqs)-1].URL, req.URL); ref != "" {
				req.Header.Set("Referer", ref)
			}
			err = c.checkRedirect(req, reqs)

			// Sentinel error to let users select the
			// previous response, without closing its
			// body. See Issue 10069.
			if err == ErrUseLastResponse {
				return resp, nil
			}

			// Close the previous response's body. But
			// read at least some of the body so if it's
			// small the underlying TCP connection will be
			// re-used. No need to check for errors: if it
			// fails, the Transport won't reuse it anyway.
			const maxBodySlurpSize = 2 << 10
			if resp.ContentLength == -1 || resp.ContentLength <= maxBodySlurpSize {
				io.CopyN(ioutil.Discard, resp.Body, maxBodySlurpSize)
			}
			resp.Body.Close()

			if err != nil {
				// Special case for Go 1 compatibility: return both the response
				// and an error if the CheckRedirect function failed.
				// See https://golang.org/issue/3795
				// The resp.Body has already been closed.
				ue := uerr(err)
				ue.(*url.Error).URL = loc
				return resp, ue
			}
		}

		reqs = append(reqs, req)
		var err error
		var didTimeout func() bool
		if resp, didTimeout, err = c.send(req, deadline); err != nil {
			// c.send() always closes req.Body
			reqBodyClosed = true
			if !deadline.IsZero() && didTimeout() {
				err = &httpError{
					// TODO: early in cycle: s/Client.Timeout exceeded/timeout or context cancellation/
					err:     err.Error() + " (Client.Timeout exceeded while awaiting headers)",
					timeout: true,
				}
			}
			return nil, uerr(err)
		}

		var shouldRedirect bool
		redirectMethod, shouldRedirect, includeBody = redirectBehavior(req.Method, resp, reqs[0])
		if !shouldRedirect {
			return resp, nil
		}

		req.closeBody()
	}
}

整个http.Client.Do逻辑分为两道,第一道执行send发送请求接收Response,关闭Req.Body;第二层对请求执行重定向等操作(若需要redirect),并关闭Resp.Body

其中,send执行请求的发送和接收动作,展开如下:

// didTimeout is non-nil only if err != nil.
func (c *Client) send(req *Request, deadline time.Time) (resp *Response, didTimeout func() bool, err error) {
	if c.Jar != nil {
		for _, cookie := range c.Jar.Cookies(req.URL) {
			req.AddCookie(cookie)
		}
	}
	resp, didTimeout, err = send(req, c.transport(), deadline)
	if err != nil {
		return nil, didTimeout, err
	}
	if c.Jar != nil {
		if rc := resp.Cookies(); len(rc) > 0 {
			c.Jar.SetCookies(req.URL, rc)
		}
	}
	return resp, nil, nil
}

// send issues an HTTP request.
// Caller should close resp.Body when done reading from it.
func send(ireq *Request, rt RoundTripper, deadline time.Time) (resp *Response, didTimeout func() bool, err error) {
	req := ireq // req is either the original request, or a modified fork

	if rt == nil {
		req.closeBody()
		return nil, alwaysFalse, errors.New("http: no Client.Transport or DefaultTransport")
	}

	if req.URL == nil {
		req.closeBody()
		return nil, alwaysFalse, errors.New("http: nil Request.URL")
	}

	if req.RequestURI != "" {
		req.closeBody()
		return nil, alwaysFalse, errors.New("http: Request.RequestURI can't be set in client requests.")
	}

	// forkReq forks req into a shallow clone of ireq the first
	// time it's called.
	forkReq := func() {
		if ireq == req {
			req = new(Request)
			*req = *ireq // shallow clone
		}
	}

	// Most the callers of send (Get, Post, et al) don't need
	// Headers, leaving it uninitialized. We guarantee to the
	// Transport that this has been initialized, though.
	if req.Header == nil {
		forkReq()
		req.Header = make(Header)
	}

	if u := req.URL.User; u != nil && req.Header.Get("Authorization") == "" {
		username := u.Username()
		password, _ := u.Password()
		forkReq()
		req.Header = cloneOrMakeHeader(ireq.Header)
		req.Header.Set("Authorization", "Basic "+basicAuth(username, password))
	}

	if !deadline.IsZero() {
		forkReq()
	}
	stopTimer, didTimeout := setRequestCancel(req, rt, deadline)

	resp, err = rt.RoundTrip(req)
	if err != nil {
		stopTimer()
		if resp != nil {
			log.Printf("RoundTripper returned a response & error; ignoring response")
		}
		if tlsErr, ok := err.(tls.RecordHeaderError); ok {
			// If we get a bad TLS record header, check to see if the
			// response looks like HTTP and give a more helpful error.
			// See golang.org/issue/11111.
			if string(tlsErr.RecordHeader[:]) == "HTTP/" {
				err = errors.New("http: server gave HTTP response to HTTPS client")
			}
		}
		return nil, didTimeout, err
	}
	if !deadline.IsZero() {
		resp.Body = &cancelTimerBody{
			stop:          stopTimer,
			rc:            resp.Body,
			reqDidTimeout: didTimeout,
		}
	}
	return resp, nil, nil
}

func (c *Client) transport() RoundTripper {
	if c.Transport != nil {
		return c.Transport
	}
	return DefaultTransport
}

入参为http.Request,http.Transport以及deadline(http.Client.Timeout)。函数处理逻辑具体分为两个步骤,如下:

1.setRequestCancel

设置请求超时时间为http.Client.Timeout:

// setRequestCancel sets the Cancel field of req, if deadline is
// non-zero. The RoundTripper's type is used to determine whether the legacy
// CancelRequest behavior should be used.
//
// As background, there are three ways to cancel a request:
// First was Transport.CancelRequest. (deprecated)
// Second was Request.Cancel (this mechanism).
// Third was Request.Context.
func setRequestCancel(req *Request, rt RoundTripper, deadline time.Time) (stopTimer func(), didTimeout func() bool) {
	if deadline.IsZero() {
		return nop, alwaysFalse
	}

	initialReqCancel := req.Cancel // the user's original Request.Cancel, if any

	cancel := make(chan struct{})
	req.Cancel = cancel

	doCancel := func() {
		// The newer way (the second way in the func comment):
		close(cancel)

		// The legacy compatibility way, used only
		// for RoundTripper implementations written
		// before Go 1.5 or Go 1.6.
		type canceler interface {
			CancelRequest(*Request)
		}
		switch v := rt.(type) {
		case *Transport, *http2Transport:
			// Do nothing. The net/http package's transports
			// support the new Request.Cancel channel
		case canceler:
			v.CancelRequest(req)
		}
	}

	stopTimerCh := make(chan struct{})
	var once sync.Once
	stopTimer = func() { once.Do(func() { close(stopTimerCh) }) }

	timer := time.NewTimer(time.Until(deadline))
	var timedOut atomicBool

	go func() {
		select {
		case <-initialReqCancel:
			doCancel()
			timer.Stop()
		case <-timer.C:
			timedOut.setTrue()
			doCancel()
		case <-stopTimerCh:
			timer.Stop()
		}
	}()

	return stopTimer, timedOut.isSet
}

// A Request represents an HTTP request received by a server
// or to be sent by a client.
//
// The field semantics differ slightly between client and server
// usage. In addition to the notes on the fields below, see the
// documentation for Request.Write and RoundTripper.
type Request struct {
    ...
	// Cancel is an optional channel whose closure indicates that the client
	// request should be regarded as canceled. Not all implementations of
	// RoundTripper may support Cancel.
	//
	// For server requests, this field is not applicable.
	//
	// Deprecated: Set the Request's context with NewRequestWithContext
	// instead. If a Request's Cancel field and context are both
	// set, it is undefined whether Cancel is respected.
	Cancel <-chan struct{}

	// Response is the redirect response which caused this request
	// to be created. This field is only populated during client
	// redirects.
	Response *Response

	// ctx is either the client or server context. It should only
	// be modified via copying the whole Request using WithContext.
	// It is unexported to prevent people from using Context wrong
	// and mutating the contexts held by callers of the same request.
	ctx context.Context
}

有三种方式取消一个请求,如下:

  • First was Transport.CancelRequest. (deprecated)
  • Second was Request.Cancel (this mechanism).
  • Third was Request.Context.

setRequestCancel执行了前面两种方式

2.resp, err = rt.RoundTrip(req)

在设置了超时timer后,执行具体的请求操作

回到http.Transport(net/http/transport.go),Transport实现了RoundTripper接口,如下:

client := &http.Client{
    Transport: &http.Transport{
        Proxy: http.ProxyFromEnvironment,
        DialContext: (&net.Dialer{
            Timeout:   30 * time.Second,
            KeepAlive: 30 * time.Second,
            DualStack: true,
        }).DialContext,
        MaxIdleConns:        100,
        MaxIdleConnsPerHost: 100,
        IdleConnTimeout:     90 * time.Second,
    },
}
...

// RoundTrip implements the RoundTripper interface.
//
// For higher-level HTTP client support (such as handling of cookies
// and redirects), see Get, Post, and the Client type.
//
// Like the RoundTripper interface, the error types returned
// by RoundTrip are unspecified.
func (t *Transport) RoundTrip(req *Request) (*Response, error) {
	return t.roundTrip(req)
}

// roundTrip implements a RoundTripper over HTTP.
func (t *Transport) roundTrip(req *Request) (*Response, error) {
	t.nextProtoOnce.Do(t.onceSetNextProtoDefaults)
	ctx := req.Context()
	trace := httptrace.ContextClientTrace(ctx)

	if req.URL == nil {
		req.closeBody()
		return nil, errors.New("http: nil Request.URL")
	}
	if req.Header == nil {
		req.closeBody()
		return nil, errors.New("http: nil Request.Header")
	}
	scheme := req.URL.Scheme
	isHTTP := scheme == "http" || scheme == "https"
	if isHTTP {
		for k, vv := range req.Header {
			if !httpguts.ValidHeaderFieldName(k) {
				return nil, fmt.Errorf("net/http: invalid header field name %q", k)
			}
			for _, v := range vv {
				if !httpguts.ValidHeaderFieldValue(v) {
					return nil, fmt.Errorf("net/http: invalid header field value %q for key %v", v, k)
				}
			}
		}
	}

	if t.useRegisteredProtocol(req) {
		altProto, _ := t.altProto.Load().(map[string]RoundTripper)
		if altRT := altProto[scheme]; altRT != nil {
			if resp, err := altRT.RoundTrip(req); err != ErrSkipAltProtocol {
				return resp, err
			}
		}
	}
	if !isHTTP {
		req.closeBody()
		return nil, &badStringError{"unsupported protocol scheme", scheme}
	}
	if req.Method != "" && !validMethod(req.Method) {
		return nil, fmt.Errorf("net/http: invalid method %q", req.Method)
	}
	if req.URL.Host == "" {
		req.closeBody()
		return nil, errors.New("http: no Host in request URL")
	}

	for {
		select {
		case <-ctx.Done():
			req.closeBody()
			return nil, ctx.Err()
		default:
		}

		// treq gets modified by roundTrip, so we need to recreate for each retry.
		treq := &transportRequest{Request: req, trace: trace}
		cm, err := t.connectMethodForRequest(treq)
		if err != nil {
			req.closeBody()
			return nil, err
		}

		// Get the cached or newly-created connection to either the
		// host (for http or https), the http proxy, or the http proxy
		// pre-CONNECTed to https server. In any case, we'll be ready
		// to send it requests.
		pconn, err := t.getConn(treq, cm)
		if err != nil {
			t.setReqCanceler(req, nil)
			req.closeBody()
			return nil, err
		}

		var resp *Response
		if pconn.alt != nil {
			// HTTP/2 path.
			t.setReqCanceler(req, nil) // not cancelable with CancelRequest
			resp, err = pconn.alt.RoundTrip(req)
		} else {
			resp, err = pconn.roundTrip(treq)
		}
		if err == nil {
			return resp, nil
		}

		// Failed. Clean up and determine whether to retry.

		_, isH2DialError := pconn.alt.(http2erringRoundTripper)
		if http2isNoCachedConnError(err) || isH2DialError {
			t.removeIdleConn(pconn)
			t.decConnsPerHost(pconn.cacheKey)
		}
		if !pconn.shouldRetryRequest(req, err) {
			// Issue 16465: return underlying net.Conn.Read error from peek,
			// as we've historically done.
			if e, ok := err.(transportReadFromServerError); ok {
				err = e.err
			}
			return nil, err
		}
		testHookRoundTripRetried()

		// Rewind the body if we're able to.
		if req.GetBody != nil {
			newReq := *req
			var err error
			newReq.Body, err = req.GetBody()
			if err != nil {
				return nil, err
			}
			req = &newReq
		}
	}
}

拆分步骤如下:

获取连接(Transport.getConn)

// treq gets modified by roundTrip, so we need to recreate for each retry.
treq := &transportRequest{Request: req, trace: trace}
cm, err := t.connectMethodForRequest(treq)
if err != nil {
    req.closeBody()
    return nil, err
}

// Get the cached or newly-created connection to either the
// host (for http or https), the http proxy, or the http proxy
// pre-CONNECTed to https server. In any case, we'll be ready
// to send it requests.
pconn, err := t.getConn(treq, cm)
if err != nil {
    t.setReqCanceler(req, nil)
    req.closeBody()
    return nil, err
}

...
// transportRequest is a wrapper around a *Request that adds
// optional extra headers to write and stores any error to return
// from roundTrip.
type transportRequest struct {
	*Request                        // original request, not to be mutated
	extra    Header                 // extra headers to write, or nil
	trace    *httptrace.ClientTrace // optional

	mu  sync.Mutex // guards err
	err error      // first setError value for mapRoundTripError to consider
}

func (t *Transport) connectMethodForRequest(treq *transportRequest) (cm connectMethod, err error) {
	// TODO: the validPort check is redundant after CL 189258, as url.URL.Port
	// only returns valid ports now. golang.org/issue/33600
	if port := treq.URL.Port(); !validPort(port) {
		return cm, fmt.Errorf("invalid URL port %q", port)
	}
	cm.targetScheme = treq.URL.Scheme
	cm.targetAddr = canonicalAddr(treq.URL)
	if t.Proxy != nil {
		cm.proxyURL, err = t.Proxy(treq.Request)
		if err == nil && cm.proxyURL != nil {
			if port := cm.proxyURL.Port(); !validPort(port) {
				return cm, fmt.Errorf("invalid proxy URL port %q", port)
			}
		}
	}
	cm.onlyH1 = treq.requiresHTTP1()
	return cm, err
}

// connectMethod is the map key (in its String form) for keeping persistent
// TCP connections alive for subsequent HTTP requests.
//
// A connect method may be of the following types:
//
//	connectMethod.key().String()      Description
//	------------------------------    -------------------------
//	|http|foo.com                     http directly to server, no proxy
//	|https|foo.com                    https directly to server, no proxy
//	|https,h1|foo.com                 https directly to server w/o HTTP/2, no proxy
//	http://proxy.com|https|foo.com    http to proxy, then CONNECT to foo.com
//	http://proxy.com|http             http to proxy, http to anywhere after that
//	socks5://proxy.com|http|foo.com   socks5 to proxy, then http to foo.com
//	socks5://proxy.com|https|foo.com  socks5 to proxy, then https to foo.com
//	https://proxy.com|https|foo.com   https to proxy, then CONNECT to foo.com
//	https://proxy.com|http            https to proxy, http to anywhere after that
//
type connectMethod struct {
	proxyURL     *url.URL // nil for no proxy, else full proxy URL
	targetScheme string   // "http" or "https"
	// If proxyURL specifies an http or https proxy, and targetScheme is http (not https),
	// then targetAddr is not included in the connect method key, because the socket can
	// be reused for different targetAddr values.
	targetAddr string
	onlyH1     bool // whether to disable HTTP/2 and force HTTP/1
}

...
// getConn dials and creates a new persistConn to the target as
// specified in the connectMethod. This includes doing a proxy CONNECT
// and/or setting up TLS.  If this doesn't return an error, the persistConn
// is ready to write requests to.
func (t *Transport) getConn(treq *transportRequest, cm connectMethod) (pc *persistConn, err error) {
	req := treq.Request
	trace := treq.trace
	ctx := req.Context()
	if trace != nil && trace.GetConn != nil {
		trace.GetConn(cm.addr())
	}

	w := &wantConn{
		cm:         cm,
		key:        cm.key(),
		ctx:        ctx,
		ready:      make(chan struct{}, 1),
		beforeDial: testHookPrePendingDial,
		afterDial:  testHookPostPendingDial,
	}
	defer func() {
		if err != nil {
			w.cancel(t, err)
		}
	}()

	// Queue for idle connection.
	if delivered := t.queueForIdleConn(w); delivered {
		pc := w.pc
		// Trace only for HTTP/1.
		// HTTP/2 calls trace.GotConn itself.
		if pc.alt == nil && trace != nil && trace.GotConn != nil {
			trace.GotConn(pc.gotIdleConnTrace(pc.idleAt))
		}
		// set request canceler to some non-nil function so we
		// can detect whether it was cleared between now and when
		// we enter roundTrip
		t.setReqCanceler(req, func(error) {})
		return pc, nil
	}

	cancelc := make(chan error, 1)
	t.setReqCanceler(req, func(err error) { cancelc <- err })

	// Queue for permission to dial.
	t.queueForDial(w)

	// Wait for completion or cancellation.
	select {
	case <-w.ready:
		// Trace success but only for HTTP/1.
		// HTTP/2 calls trace.GotConn itself.
		if w.pc != nil && w.pc.alt == nil && trace != nil && trace.GotConn != nil {
			trace.GotConn(httptrace.GotConnInfo{Conn: w.pc.conn, Reused: w.pc.isReused()})
		}
		if w.err != nil {
			// If the request has been cancelled, that's probably
			// what caused w.err; if so, prefer to return the
			// cancellation error (see golang.org/issue/16049).
			select {
			case <-req.Cancel:
				return nil, errRequestCanceledConn
			case <-req.Context().Done():
				return nil, req.Context().Err()
			case err := <-cancelc:
				if err == errRequestCanceled {
					err = errRequestCanceledConn
				}
				return nil, err
			default:
				// return below
			}
		}
		return w.pc, w.err
	case <-req.Cancel:
		return nil, errRequestCanceledConn
	case <-req.Context().Done():
		return nil, req.Context().Err()
	case err := <-cancelc:
		if err == errRequestCanceled {
			err = errRequestCanceledConn
		}
		return nil, err
	}
}

其中getConn是重点分析的内容。首先调用queueForIdleConn获取空闲连接:

// queueForIdleConn queues w to receive the next idle connection for w.cm.
// As an optimization hint to the caller, queueForIdleConn reports whether
// it successfully delivered an already-idle connection.
func (t *Transport) queueForIdleConn(w *wantConn) (delivered bool) {
	if t.DisableKeepAlives {
		return false
	}

	t.idleMu.Lock()
	defer t.idleMu.Unlock()

	// Stop closing connections that become idle - we might want one.
	// (That is, undo the effect of t.CloseIdleConnections.)
	t.closeIdle = false

	if w == nil {
		// Happens in test hook.
		return false
	}

	// Look for most recently-used idle connection.
	if list, ok := t.idleConn[w.key]; ok {
		stop := false
		delivered := false
		for len(list) > 0 && !stop {
			pconn := list[len(list)-1]
			if pconn.isBroken() {
				// persistConn.readLoop has marked the connection broken,
				// but Transport.removeIdleConn has not yet removed it from the idle list.
				// Drop on floor on behalf of Transport.removeIdleConn.
				list = list[:len(list)-1]
				continue
			}
			delivered = w.tryDeliver(pconn, nil)
			if delivered {
				if pconn.alt != nil {
					// HTTP/2: multiple clients can share pconn.
					// Leave it in the list.
				} else {
					// HTTP/1: only one client can use pconn.
					// Remove it from the list.
					t.idleLRU.remove(pconn)
					list = list[:len(list)-1]
				}
			}
			stop = true
		}
		if len(list) > 0 {
			t.idleConn[w.key] = list
		} else {
			delete(t.idleConn, w.key)
		}
		if stop {
			return delivered
		}
	}

	// Register to receive next connection that becomes idle.
	if t.idleConnWait == nil {
		t.idleConnWait = make(map[connectMethodKey]wantConnQueue)
	}
	q := t.idleConnWait[w.key]
	q.cleanFront()
	q.pushBack(w)
	t.idleConnWait[w.key] = q
	return false
}

// A wantConn records state about a wanted connection
// (that is, an active call to getConn).
// The conn may be gotten by dialing or by finding an idle connection,
// or a cancellation may make the conn no longer wanted.
// These three options are racing against each other and use
// wantConn to coordinate and agree about the winning outcome.
type wantConn struct {
	cm    connectMethod
	key   connectMethodKey // cm.key()
	ctx   context.Context  // context for dial
	ready chan struct{}    // closed when pc, err pair is delivered

	// hooks for testing to know when dials are done
	// beforeDial is called in the getConn goroutine when the dial is queued.
	// afterDial is called when the dial is completed or cancelled.
	beforeDial func()
	afterDial  func()

	mu  sync.Mutex // protects pc, err, close(ready)
	pc  *persistConn
	err error
}

// tryDeliver attempts to deliver pc, err to w and reports whether it succeeded.
func (w *wantConn) tryDeliver(pc *persistConn, err error) bool {
	w.mu.Lock()
	defer w.mu.Unlock()

	if w.pc != nil || w.err != nil {
		return false
	}

	w.pc = pc
	w.err = err
	if w.pc == nil && w.err == nil {
		panic("net/http: internal error: misuse of tryDeliver")
	}
	close(w.ready)
	return true
}

idleConn(map[connectMethodKey][]*persistConn)表示Transport的空闲连接池。其中connectMethodKey是对url关键字段的分解,代表连接的目标方(代理,协议,目的地址),而values是persistConn的列表

而persistConn是对连接的一层封装,通常表示keep-alive连接,也可以表示non-keep-alive连接

type Transport struct {
	idleMu       sync.Mutex
	closeIdle    bool                                // user has requested to close all idle conns
	idleConn     map[connectMethodKey][]*persistConn // most recently used at end
	idleConnWait map[connectMethodKey]wantConnQueue  // waiting getConns
	idleLRU      connLRU
    ...
}

// connectMethodKey is the map key version of connectMethod, with a
// stringified proxy URL (or the empty string) instead of a pointer to
// a URL.
type connectMethodKey struct {
	proxy, scheme, addr string
	onlyH1              bool
}

// persistConn wraps a connection, usually a persistent one
// (but may be used for non-keep-alive requests as well)
type persistConn struct {
	// alt optionally specifies the TLS NextProto RoundTripper.
	// This is used for HTTP/2 today and future protocols later.
	// If it's non-nil, the rest of the fields are unused.
	alt RoundTripper

	t         *Transport
	cacheKey  connectMethodKey
	conn      net.Conn
	tlsState  *tls.ConnectionState
	br        *bufio.Reader       // from conn
	bw        *bufio.Writer       // to conn
	nwrite    int64               // bytes written
	reqch     chan requestAndChan // written by roundTrip; read by readLoop
	writech   chan writeRequest   // written by roundTrip; read by writeLoop
	closech   chan struct{}       // closed when conn closed
	isProxy   bool
	sawEOF    bool  // whether we've seen EOF from conn; owned by readLoop
	readLimit int64 // bytes allowed to be read; owned by readLoop
	// writeErrCh passes the request write error (usually nil)
	// from the writeLoop goroutine to the readLoop which passes
	// it off to the res.Body reader, which then uses it to decide
	// whether or not a connection can be reused. Issue 7569.
	writeErrCh chan error

	writeLoopDone chan struct{} // closed when write loop ends

	// Both guarded by Transport.idleMu:
	idleAt    time.Time   // time it last become idle
	idleTimer *time.Timer // holding an AfterFunc to close it

	mu                   sync.Mutex // guards following fields
	numExpectedResponses int
	closed               error // set non-nil when conn is closed, before closech is closed
	canceledErr          error // set non-nil if conn is canceled
	broken               bool  // an error has happened on this connection; marked broken so it's not reused.
	reused               bool  // whether conn has had successful request/response and is being reused.
	// mutateHeaderFunc is an optional func to modify extra
	// headers on each outbound request before it's written. (the
	// original Request given to RoundTrip is not modified)
	mutateHeaderFunc func(Header)
}

queueForIdleConn首先尝试从idleConn中获取最近使用的空闲连接(Look for most recently-used idle connection)。如果找到,则从连接列表中删除掉该连接(非HTTP/2情况,因为HTTP/2协议多个请求可以同时共用底层连接)

如果发现没有对应空闲连接,则将wantConn赋值给idleConnWait(waiting getConns),代表此时多了一个等待获取连接的请求

回到getConn内容。在执行queueForIdleConn获取空闲连接成功后,直接返回该连接;否则执行queueForDial尝试创建连接,等待创建结束并返回连接:

// getConn dials and creates a new persistConn to the target as
// specified in the connectMethod. This includes doing a proxy CONNECT
// and/or setting up TLS.  If this doesn't return an error, the persistConn
// is ready to write requests to.
func (t *Transport) getConn(treq *transportRequest, cm connectMethod) (pc *persistConn, err error) {
    if delivered := t.queueForIdleConn(w); delivered {
    	...
    }

	// Queue for permission to dial.
	t.queueForDial(w)

	// Wait for completion or cancellation.
	select {
	case <-w.ready:
		// Trace success but only for HTTP/1.
		// HTTP/2 calls trace.GotConn itself.
		if w.pc != nil && w.pc.alt == nil && trace != nil && trace.GotConn != nil {
			trace.GotConn(httptrace.GotConnInfo{Conn: w.pc.conn, Reused: w.pc.isReused()})
		}
		if w.err != nil {
			// If the request has been cancelled, that's probably
			// what caused w.err; if so, prefer to return the
			// cancellation error (see golang.org/issue/16049).
			select {
			case <-req.Cancel:
				return nil, errRequestCanceledConn
			case <-req.Context().Done():
				return nil, req.Context().Err()
			case err := <-cancelc:
				if err == errRequestCanceled {
					err = errRequestCanceledConn
				}
				return nil, err
			default:
				// return below
			}
		}
		return w.pc, w.err
	case <-req.Cancel:
		return nil, errRequestCanceledConn
	case <-req.Context().Done():
		return nil, req.Context().Err()
	case err := <-cancelc:
		if err == errRequestCanceled {
			err = errRequestCanceledConn
		}
		return nil, err
	}
}

// queueForDial queues w to wait for permission to begin dialing.
// Once w receives permission to dial, it will do so in a separate goroutine.
func (t *Transport) queueForDial(w *wantConn) {
	w.beforeDial()
	if t.MaxConnsPerHost <= 0 {
		go t.dialConnFor(w)
		return
	}

	t.connsPerHostMu.Lock()
	defer t.connsPerHostMu.Unlock()

	if n := t.connsPerHost[w.key]; n < t.MaxConnsPerHost {
		if t.connsPerHost == nil {
			t.connsPerHost = make(map[connectMethodKey]int)
		}
		t.connsPerHost[w.key] = n + 1
		go t.dialConnFor(w)
		return
	}

	if t.connsPerHostWait == nil {
		t.connsPerHostWait = make(map[connectMethodKey]wantConnQueue)
	}
	q := t.connsPerHostWait[w.key]
	q.cleanFront()
	q.pushBack(w)
	t.connsPerHostWait[w.key] = q
}

// Transport is an implementation of RoundTripper that supports HTTP,
// HTTPS, and HTTP proxies (for either HTTP or HTTPS with CONNECT).
//
// By default, Transport caches connections for future re-use.
// This may leave many open connections when accessing many hosts.
// This behavior can be managed using Transport's CloseIdleConnections method
// and the MaxIdleConnsPerHost and DisableKeepAlives fields.
//
// Transports should be reused instead of created as needed.
// Transports are safe for concurrent use by multiple goroutines.
//
// A Transport is a low-level primitive for making HTTP and HTTPS requests.
// For high-level functionality, such as cookies and redirects, see Client.
//
// Transport uses HTTP/1.1 for HTTP URLs and either HTTP/1.1 or HTTP/2
// for HTTPS URLs, depending on whether the server supports HTTP/2,
// and how the Transport is configured. The DefaultTransport supports HTTP/2.
// To explicitly enable HTTP/2 on a transport, use golang.org/x/net/http2
// and call ConfigureTransport. See the package docs for more about HTTP/2.
//
// Responses with status codes in the 1xx range are either handled
// automatically (100 expect-continue) or ignored. The one
// exception is HTTP status code 101 (Switching Protocols), which is
// considered a terminal status and returned by RoundTrip. To see the
// ignored 1xx responses, use the httptrace trace package's
// ClientTrace.Got1xxResponse.
//
// Transport only retries a request upon encountering a network error
// if the request is idempotent and either has no body or has its
// Request.GetBody defined. HTTP requests are considered idempotent if
// they have HTTP methods GET, HEAD, OPTIONS, or TRACE; or if their
// Header map contains an "Idempotency-Key" or "X-Idempotency-Key"
// entry. If the idempotency key value is an zero-length slice, the
// request is treated as idempotent but the header is not sent on the
// wire.
type Transport struct {
	idleMu       sync.Mutex
	closeIdle    bool                                // user has requested to close all idle conns
	idleConn     map[connectMethodKey][]*persistConn // most recently used at end
	idleConnWait map[connectMethodKey]wantConnQueue  // waiting getConns
	idleLRU      connLRU

	reqMu       sync.Mutex
	reqCanceler map[*Request]func(error)

	altMu    sync.Mutex   // guards changing altProto only
	altProto atomic.Value // of nil or map[string]RoundTripper, key is URI scheme

	connsPerHostMu   sync.Mutex
	connsPerHost     map[connectMethodKey]int
	connsPerHostWait map[connectMethodKey]wantConnQueue // waiting getConns
    ...
}

// A wantConnQueue is a queue of wantConns.
type wantConnQueue struct {
	// This is a queue, not a deque.
	// It is split into two stages - head[headPos:] and tail.
	// popFront is trivial (headPos++) on the first stage, and
	// pushBack is trivial (append) on the second stage.
	// If the first stage is empty, popFront can swap the
	// first and second stages to remedy the situation.
	//
	// This two-stage split is analogous to the use of two lists
	// in Okasaki's purely functional queue but without the
	// overhead of reversing the list when swapping stages.
	head    []*wantConn
	headPos int
	tail    []*wantConn
}

还记得最开始介绍Transport结构体时有如下参数:

  • MaxConnsPerHost:控制某个host的所有连接,包括创建中,正在使用的,以及空闲的连接(including connections in the dialing, active, and idle states)。一旦超过限制,dial会阻塞(Zero means no limit)
  • connsPerHost:表示每个host(connectMethodKey)的目前连接个数
  • connsPerHostWait:表示每个host(connectMethodKey)等待建立的连接请求

queueForDial的作用是:判断wantConn对应的host目前连接数是否超过Transport.MaxConnsPerHost,如果没有超过,则执行dialConnFor操作为该请求创建连接,同时递增Transport.connsPerHost[wantConn];否则将wantConn放入connsPerHostWait列表中

接下来看dialConnFor,如下:

// dialConnFor dials on behalf of w and delivers the result to w.
// dialConnFor has received permission to dial w.cm and is counted in t.connCount[w.cm.key()].
// If the dial is cancelled or unsuccessful, dialConnFor decrements t.connCount[w.cm.key()].
func (t *Transport) dialConnFor(w *wantConn) {
	defer w.afterDial()

	pc, err := t.dialConn(w.ctx, w.cm)
	delivered := w.tryDeliver(pc, err)
	if err == nil && (!delivered || pc.alt != nil) {
		// pconn was not passed to w,
		// or it is HTTP/2 and can be shared.
		// Add to the idle connection pool.
		t.putOrCloseIdleConn(pc)
	}
	if err != nil {
		t.decConnsPerHost(w.key)
	}
}

// tryDeliver attempts to deliver pc, err to w and reports whether it succeeded.
func (w *wantConn) tryDeliver(pc *persistConn, err error) bool {
	w.mu.Lock()
	defer w.mu.Unlock()

	if w.pc != nil || w.err != nil {
		return false
	}

	w.pc = pc
	w.err = err
	if w.pc == nil && w.err == nil {
		panic("net/http: internal error: misuse of tryDeliver")
	}
	close(w.ready)
	return true
}

func (t *Transport) dialConn(ctx context.Context, cm connectMethod) (pconn *persistConn, err error) {
	pconn = &persistConn{
		t:             t,
		cacheKey:      cm.key(),
		reqch:         make(chan requestAndChan, 1),
		writech:       make(chan writeRequest, 1),
		closech:       make(chan struct{}),
		writeErrCh:    make(chan error, 1),
		writeLoopDone: make(chan struct{}),
	}
	trace := httptrace.ContextClientTrace(ctx)
	wrapErr := func(err error) error {
		if cm.proxyURL != nil {
			// Return a typed error, per Issue 16997
			return &net.OpError{Op: "proxyconnect", Net: "tcp", Err: err}
		}
		return err
	}
	if cm.scheme() == "https" && t.DialTLS != nil {
		var err error
		pconn.conn, err = t.DialTLS("tcp", cm.addr())
		if err != nil {
			return nil, wrapErr(err)
		}
		if pconn.conn == nil {
			return nil, wrapErr(errors.New("net/http: Transport.DialTLS returned (nil, nil)"))
		}
		if tc, ok := pconn.conn.(*tls.Conn); ok {
			// Handshake here, in case DialTLS didn't. TLSNextProto below
			// depends on it for knowing the connection state.
			if trace != nil && trace.TLSHandshakeStart != nil {
				trace.TLSHandshakeStart()
			}
			if err := tc.Handshake(); err != nil {
				go pconn.conn.Close()
				if trace != nil && trace.TLSHandshakeDone != nil {
					trace.TLSHandshakeDone(tls.ConnectionState{}, err)
				}
				return nil, err
			}
			cs := tc.ConnectionState()
			if trace != nil && trace.TLSHandshakeDone != nil {
				trace.TLSHandshakeDone(cs, nil)
			}
			pconn.tlsState = &cs
		}
	} else {
		conn, err := t.dial(ctx, "tcp", cm.addr())
		if err != nil {
			return nil, wrapErr(err)
		}
		pconn.conn = conn
		if cm.scheme() == "https" {
			var firstTLSHost string
			if firstTLSHost, _, err = net.SplitHostPort(cm.addr()); err != nil {
				return nil, wrapErr(err)
			}
			if err = pconn.addTLS(firstTLSHost, trace); err != nil {
				return nil, wrapErr(err)
			}
		}
	}

	// Proxy setup.
	switch {
	case cm.proxyURL == nil:
		// Do nothing. Not using a proxy.
	case cm.proxyURL.Scheme == "socks5":
		conn := pconn.conn
		d := socksNewDialer("tcp", conn.RemoteAddr().String())
		if u := cm.proxyURL.User; u != nil {
			auth := &socksUsernamePassword{
				Username: u.Username(),
			}
			auth.Password, _ = u.Password()
			d.AuthMethods = []socksAuthMethod{
				socksAuthMethodNotRequired,
				socksAuthMethodUsernamePassword,
			}
			d.Authenticate = auth.Authenticate
		}
		if _, err := d.DialWithConn(ctx, conn, "tcp", cm.targetAddr); err != nil {
			conn.Close()
			return nil, err
		}
	case cm.targetScheme == "http":
		pconn.isProxy = true
		if pa := cm.proxyAuth(); pa != "" {
			pconn.mutateHeaderFunc = func(h Header) {
				h.Set("Proxy-Authorization", pa)
			}
		}
	case cm.targetScheme == "https":
		conn := pconn.conn
		hdr := t.ProxyConnectHeader
		if hdr == nil {
			hdr = make(Header)
		}
		connectReq := &Request{
			Method: "CONNECT",
			URL:    &url.URL{Opaque: cm.targetAddr},
			Host:   cm.targetAddr,
			Header: hdr,
		}
		if pa := cm.proxyAuth(); pa != "" {
			connectReq.Header.Set("Proxy-Authorization", pa)
		}
		connectReq.Write(conn)

		// Read response.
		// Okay to use and discard buffered reader here, because
		// TLS server will not speak until spoken to.
		br := bufio.NewReader(conn)
		resp, err := ReadResponse(br, connectReq)
		if err != nil {
			conn.Close()
			return nil, err
		}
		if resp.StatusCode != 200 {
			f := strings.SplitN(resp.Status, " ", 2)
			conn.Close()
			if len(f) < 2 {
				return nil, errors.New("unknown status code")
			}
			return nil, errors.New(f[1])
		}
	}

	if cm.proxyURL != nil && cm.targetScheme == "https" {
		if err := pconn.addTLS(cm.tlsHost(), trace); err != nil {
			return nil, err
		}
	}

	if s := pconn.tlsState; s != nil && s.NegotiatedProtocolIsMutual && s.NegotiatedProtocol != "" {
		if next, ok := t.TLSNextProto[s.NegotiatedProtocol]; ok {
			return &persistConn{t: t, cacheKey: pconn.cacheKey, alt: next(cm.targetAddr, pconn.conn.(*tls.Conn))}, nil
		}
	}

	pconn.br = bufio.NewReaderSize(pconn, t.readBufferSize())
	pconn.bw = bufio.NewWriterSize(persistConnWriter{pconn}, t.writeBufferSize())

	go pconn.readLoop()
	go pconn.writeLoop()
	return pconn, nil
}

// Add TLS to a persistent connection, i.e. negotiate a TLS session. If pconn is already a TLS
// tunnel, this function establishes a nested TLS session inside the encrypted channel.
// The remote endpoint's name may be overridden by TLSClientConfig.ServerName.
func (pconn *persistConn) addTLS(name string, trace *httptrace.ClientTrace) error {
	// Initiate TLS and check remote host name against certificate.
	cfg := cloneTLSConfig(pconn.t.TLSClientConfig)
	if cfg.ServerName == "" {
		cfg.ServerName = name
	}
	if pconn.cacheKey.onlyH1 {
		cfg.NextProtos = nil
	}
	plainConn := pconn.conn
	tlsConn := tls.Client(plainConn, cfg)
	errc := make(chan error, 2)
	var timer *time.Timer // for canceling TLS handshake
	if d := pconn.t.TLSHandshakeTimeout; d != 0 {
		timer = time.AfterFunc(d, func() {
			errc <- tlsHandshakeTimeoutError{}
		})
	}
	go func() {
		if trace != nil && trace.TLSHandshakeStart != nil {
			trace.TLSHandshakeStart()
		}
		err := tlsConn.Handshake()
		if timer != nil {
			timer.Stop()
		}
		errc <- err
	}()
	if err := <-errc; err != nil {
		plainConn.Close()
		if trace != nil && trace.TLSHandshakeDone != nil {
			trace.TLSHandshakeDone(tls.ConnectionState{}, err)
		}
		return err
	}
	cs := tlsConn.ConnectionState()
	if trace != nil && trace.TLSHandshakeDone != nil {
		trace.TLSHandshakeDone(cs, nil)
	}
	pconn.tlsState = &cs
	pconn.conn = tlsConn
	return nil
}

重点分析dialConn,该函数为connectMethod获取persistConn,步骤如下:

1.判断协议是https还是http,如果是https,则执行TLS握手过程(i.e. negotiate a TLS session);否则直接执行Transport.dial操作创建TCP连接

var zeroDialer net.Dialer

func (t *Transport) dial(ctx context.Context, network, addr string) (net.Conn, error) {
	if t.DialContext != nil {
		return t.DialContext(ctx, network, addr)
	}
	if t.Dial != nil {
		c, err := t.Dial(network, addr)
		if c == nil && err == nil {
			err = errors.New("net/http: Transport.Dial hook returned (nil, nil)")
		}
		return c, err
	}
	return zeroDialer.DialContext(ctx, network, addr)
}

这里就是调用前面分析过的net.Dialer.DialContext函数了(前后对接起来了),不再展开分析

2.执行代理设置

3.设置persistConn的读写buffer

pconn.br = bufio.NewReaderSize(pconn, t.readBufferSize())
pconn.bw = bufio.NewWriterSize(persistConnWriter{pconn}, t.writeBufferSize())

go pconn.readLoop()
go pconn.writeLoop()

在分析完getConn之后,回头来分析http.Client.Do的第二个步骤:resp, err = rt.RoundTrip(req),如下:

// roundTrip implements a RoundTripper over HTTP.
func (t *Transport) roundTrip(req *Request) (*Response, error) {
	t.nextProtoOnce.Do(t.onceSetNextProtoDefaults)
	ctx := req.Context()
	trace := httptrace.ContextClientTrace(ctx)

	if req.URL == nil {
		req.closeBody()
		return nil, errors.New("http: nil Request.URL")
	}
	if req.Header == nil {
		req.closeBody()
		return nil, errors.New("http: nil Request.Header")
	}
	scheme := req.URL.Scheme
	isHTTP := scheme == "http" || scheme == "https"
	if isHTTP {
		for k, vv := range req.Header {
			if !httpguts.ValidHeaderFieldName(k) {
				return nil, fmt.Errorf("net/http: invalid header field name %q", k)
			}
			for _, v := range vv {
				if !httpguts.ValidHeaderFieldValue(v) {
					return nil, fmt.Errorf("net/http: invalid header field value %q for key %v", v, k)
				}
			}
		}
	}

	if t.useRegisteredProtocol(req) {
		altProto, _ := t.altProto.Load().(map[string]RoundTripper)
		if altRT := altProto[scheme]; altRT != nil {
			if resp, err := altRT.RoundTrip(req); err != ErrSkipAltProtocol {
				return resp, err
			}
		}
	}
	if !isHTTP {
		req.closeBody()
		return nil, &badStringError{"unsupported protocol scheme", scheme}
	}
	if req.Method != "" && !validMethod(req.Method) {
		return nil, fmt.Errorf("net/http: invalid method %q", req.Method)
	}
	if req.URL.Host == "" {
		req.closeBody()
		return nil, errors.New("http: no Host in request URL")
	}

	for {
		select {
		case <-ctx.Done():
			req.closeBody()
			return nil, ctx.Err()
		default:
		}

		// treq gets modified by roundTrip, so we need to recreate for each retry.
		treq := &transportRequest{Request: req, trace: trace}
		cm, err := t.connectMethodForRequest(treq)
		if err != nil {
			req.closeBody()
			return nil, err
		}

		// Get the cached or newly-created connection to either the
		// host (for http or https), the http proxy, or the http proxy
		// pre-CONNECTed to https server. In any case, we'll be ready
		// to send it requests.
		pconn, err := t.getConn(treq, cm)
		if err != nil {
			t.setReqCanceler(req, nil)
			req.closeBody()
			return nil, err
		}

		var resp *Response
		if pconn.alt != nil {
			// HTTP/2 path.
			t.setReqCanceler(req, nil) // not cancelable with CancelRequest
			resp, err = pconn.alt.RoundTrip(req)
		} else {
			resp, err = pconn.roundTrip(treq)
		}
		if err == nil {
			return resp, nil
		}

		// Failed. Clean up and determine whether to retry.

		_, isH2DialError := pconn.alt.(http2erringRoundTripper)
		if http2isNoCachedConnError(err) || isH2DialError {
			t.removeIdleConn(pconn)
			t.decConnsPerHost(pconn.cacheKey)
		}
		if !pconn.shouldRetryRequest(req, err) {
			// Issue 16465: return underlying net.Conn.Read error from peek,
			// as we've historically done.
			if e, ok := err.(transportReadFromServerError); ok {
				err = e.err
			}
			return nil, err
		}
		testHookRoundTripRetried()

		// Rewind the body if we're able to.
		if req.GetBody != nil {
			newReq := *req
			var err error
			newReq.Body, err = req.GetBody()
			if err != nil {
				return nil, err
			}
			req = &newReq
		}
	}
}

在执行pconn, err := t.getConn(treq, cm)获取连接(新创建的 or 复用空闲连接)后,执行resp, err = pconn.roundTrip(treq),如下:

func (pc *persistConn) roundTrip(req *transportRequest) (resp *Response, err error) {
    ...
	// Write the request concurrently with waiting for a response,
	// in case the server decides to reply before reading our full
	// request body.
	startBytesWritten := pc.nwrite
	writeErrCh := make(chan error, 1)
	pc.writech <- writeRequest{req, writeErrCh, continueCh}

	resc := make(chan responseAndError)
	pc.reqch <- requestAndChan{
		req:        req.Request,
		ch:         resc,
		addedGzip:  requestedGzip,
		continueCh: continueCh,
		callerGone: gone,
	}

	var respHeaderTimer <-chan time.Time
	cancelChan := req.Request.Cancel
	ctxDoneChan := req.Context().Done()
	for {
		testHookWaitResLoop()
		select {
		case err := <-writeErrCh:
			if debugRoundTrip {
				req.logf("writeErrCh resv: %T/%#v", err, err)
			}
			if err != nil {
				pc.close(fmt.Errorf("write error: %v", err))
				return nil, pc.mapRoundTripError(req, startBytesWritten, err)
			}
			if d := pc.t.ResponseHeaderTimeout; d > 0 {
				if debugRoundTrip {
					req.logf("starting timer for %v", d)
				}
				timer := time.NewTimer(d)
				defer timer.Stop() // prevent leaks
				respHeaderTimer = timer.C
			}
		case <-pc.closech:
			if debugRoundTrip {
				req.logf("closech recv: %T %#v", pc.closed, pc.closed)
			}
			return nil, pc.mapRoundTripError(req, startBytesWritten, pc.closed)
		case <-respHeaderTimer:
			if debugRoundTrip {
				req.logf("timeout waiting for response headers.")
			}
			pc.close(errTimeout)
			return nil, errTimeout
		case re := <-resc:
			if (re.res == nil) == (re.err == nil) {
				panic(fmt.Sprintf("internal error: exactly one of res or err should be set; nil=%v", re.res == nil))
			}
			if debugRoundTrip {
				req.logf("resc recv: %p, %T/%#v", re.res, re.err, re.err)
			}
			if re.err != nil {
				return nil, pc.mapRoundTripError(req, startBytesWritten, re.err)
			}
			return re.res, nil
		case <-cancelChan:
			pc.t.CancelRequest(req.Request)
			cancelChan = nil
		case <-ctxDoneChan:
			pc.t.cancelRequest(req.Request, req.Context().Err())
			cancelChan = nil
			ctxDoneChan = nil
		}
	}
}

这里需要结合前面的pc.readLoop,如下:

func (pc *persistConn) readLoop() {
	closeErr := errReadLoopExiting // default value, if not changed below
	defer func() {
		pc.close(closeErr)
		pc.t.removeIdleConn(pc)
	}()

	tryPutIdleConn := func(trace *httptrace.ClientTrace) bool {
		if err := pc.t.tryPutIdleConn(pc); err != nil {
			closeErr = err
			if trace != nil && trace.PutIdleConn != nil && err != errKeepAlivesDisabled {
				trace.PutIdleConn(err)
			}
			return false
		}
		if trace != nil && trace.PutIdleConn != nil {
			trace.PutIdleConn(nil)
		}
		return true
	}

	// eofc is used to block caller goroutines reading from Response.Body
	// at EOF until this goroutines has (potentially) added the connection
	// back to the idle pool.
	eofc := make(chan struct{})
	defer close(eofc) // unblock reader on errors

	// Read this once, before loop starts. (to avoid races in tests)
	testHookMu.Lock()
	testHookReadLoopBeforeNextRead := testHookReadLoopBeforeNextRead
	testHookMu.Unlock()

	alive := true
	for alive {
		pc.readLimit = pc.maxHeaderResponseSize()
		_, err := pc.br.Peek(1)

		pc.mu.Lock()
		if pc.numExpectedResponses == 0 {
			pc.readLoopPeekFailLocked(err)
			pc.mu.Unlock()
			return
		}
		pc.mu.Unlock()

		rc := <-pc.reqch
		trace := httptrace.ContextClientTrace(rc.req.Context())

		var resp *Response
		if err == nil {
			resp, err = pc.readResponse(rc, trace)
		} else {
			err = transportReadFromServerError{err}
			closeErr = err
		}

		if err != nil {
			if pc.readLimit <= 0 {
				err = fmt.Errorf("net/http: server response headers exceeded %d bytes; aborted", pc.maxHeaderResponseSize())
			}

			select {
			case rc.ch <- responseAndError{err: err}:
			case <-rc.callerGone:
				return
			}
			return
		}
		pc.readLimit = maxInt64 // effictively no limit for response bodies

		pc.mu.Lock()
		pc.numExpectedResponses--
		pc.mu.Unlock()

		bodyWritable := resp.bodyIsWritable()
		hasBody := rc.req.Method != "HEAD" && resp.ContentLength != 0

		if resp.Close || rc.req.Close || resp.StatusCode <= 199 || bodyWritable {
			// Don't do keep-alive on error if either party requested a close
			// or we get an unexpected informational (1xx) response.
			// StatusCode 100 is already handled above.
			alive = false
		}

		if !hasBody || bodyWritable {
			pc.t.setReqCanceler(rc.req, nil)

			// Put the idle conn back into the pool before we send the response
			// so if they process it quickly and make another request, they'll
			// get this same conn. But we use the unbuffered channel 'rc'
			// to guarantee that persistConn.roundTrip got out of its select
			// potentially waiting for this persistConn to close.
			// but after
			alive = alive &&
				!pc.sawEOF &&
				pc.wroteRequest() &&
				tryPutIdleConn(trace)

			if bodyWritable {
				closeErr = errCallerOwnsConn
			}

			select {
			case rc.ch <- responseAndError{res: resp}:
			case <-rc.callerGone:
				return
			}

			// Now that they've read from the unbuffered channel, they're safely
			// out of the select that also waits on this goroutine to die, so
			// we're allowed to exit now if needed (if alive is false)
			testHookReadLoopBeforeNextRead()
			continue
		}

		waitForBodyRead := make(chan bool, 2)
		body := &bodyEOFSignal{
			body: resp.Body,
			earlyCloseFn: func() error {
				waitForBodyRead <- false
				<-eofc // will be closed by deferred call at the end of the function
				return nil

			},
			fn: func(err error) error {
				isEOF := err == io.EOF
				waitForBodyRead <- isEOF
				if isEOF {
					<-eofc // see comment above eofc declaration
				} else if err != nil {
					if cerr := pc.canceled(); cerr != nil {
						return cerr
					}
				}
				return err
			},
		}

		resp.Body = body
		if rc.addedGzip && strings.EqualFold(resp.Header.Get("Content-Encoding"), "gzip") {
			resp.Body = &gzipReader{body: body}
			resp.Header.Del("Content-Encoding")
			resp.Header.Del("Content-Length")
			resp.ContentLength = -1
			resp.Uncompressed = true
		}

		select {
		case rc.ch <- responseAndError{res: resp}:
		case <-rc.callerGone:
			return
		}

		// Before looping back to the top of this function and peeking on
		// the bufio.Reader, wait for the caller goroutine to finish
		// reading the response body. (or for cancellation or death)
		select {
		case bodyEOF := <-waitForBodyRead:
			pc.t.setReqCanceler(rc.req, nil) // before pc might return to idle pool
			alive = alive &&
				bodyEOF &&
				!pc.sawEOF &&
				pc.wroteRequest() &&
				tryPutIdleConn(trace)
			if bodyEOF {
				eofc <- struct{}{}
			}
		case <-rc.req.Cancel:
			alive = false
			pc.t.CancelRequest(rc.req)
		case <-rc.req.Context().Done():
			alive = false
			pc.t.cancelRequest(rc.req, rc.req.Context().Err())
		case <-pc.closech:
			alive = false
		}

		testHookReadLoopBeforeNextRead()
	}
}

pc.readLoop() => get http response(接收Response) pc.writeLoop() => send http request(发送Request)

注意如下代码段(接收Response):

rc := <-pc.reqch
trace := httptrace.ContextClientTrace(rc.req.Context())

var resp *Response
if err == nil {
    resp, err = pc.readResponse(rc, trace)
} else {
    err = transportReadFromServerError{err}
    closeErr = err
}

...
// readResponse reads an HTTP response (or two, in the case of "Expect:
// 100-continue") from the server. It returns the final non-100 one.
// trace is optional.
func (pc *persistConn) readResponse(rc requestAndChan, trace *httptrace.ClientTrace) (resp *Response, err error) {
	if trace != nil && trace.GotFirstResponseByte != nil {
		if peek, err := pc.br.Peek(1); err == nil && len(peek) == 1 {
			trace.GotFirstResponseByte()
		}
	}
	num1xx := 0               // number of informational 1xx headers received
	const max1xxResponses = 5 // arbitrary bound on number of informational responses

	continueCh := rc.continueCh
	for {
		resp, err = ReadResponse(pc.br, rc.req)
		if err != nil {
			return
		}
		resCode := resp.StatusCode
		if continueCh != nil {
			if resCode == 100 {
				if trace != nil && trace.Got100Continue != nil {
					trace.Got100Continue()
				}
				continueCh <- struct{}{}
				continueCh = nil
			} else if resCode >= 200 {
				close(continueCh)
				continueCh = nil
			}
		}
		is1xx := 100 <= resCode && resCode <= 199
		// treat 101 as a terminal status, see issue 26161
		is1xxNonTerminal := is1xx && resCode != StatusSwitchingProtocols
		if is1xxNonTerminal {
			num1xx++
			if num1xx > max1xxResponses {
				return nil, errors.New("net/http: too many 1xx informational responses")
			}
			pc.readLimit = pc.maxHeaderResponseSize() // reset the limit
			if trace != nil && trace.Got1xxResponse != nil {
				if err := trace.Got1xxResponse(resCode, textproto.MIMEHeader(resp.Header)); err != nil {
					return nil, err
				}
			}
			continue
		}
		break
	}
	if resp.isProtocolSwitch() {
		resp.Body = newReadWriteCloserBody(pc.br, pc.conn)
	}

	resp.TLS = pc.tlsState
	return
}

// ReadResponse reads and returns an HTTP response from r.
// The req parameter optionally specifies the Request that corresponds
// to this Response. If nil, a GET request is assumed.
// Clients must call resp.Body.Close when finished reading resp.Body.
// After that call, clients can inspect resp.Trailer to find key/value
// pairs included in the response trailer.
func ReadResponse(r *bufio.Reader, req *Request) (*Response, error) {
	tp := textproto.NewReader(r)
	resp := &Response{
		Request: req,
	}

	// Parse the first line of the response.
	line, err := tp.ReadLine()
	if err != nil {
		if err == io.EOF {
			err = io.ErrUnexpectedEOF
		}
		return nil, err
	}
	if i := strings.IndexByte(line, ' '); i == -1 {
		return nil, &badStringError{"malformed HTTP response", line}
	} else {
		resp.Proto = line[:i]
		resp.Status = strings.TrimLeft(line[i+1:], " ")
	}
	statusCode := resp.Status
	if i := strings.IndexByte(resp.Status, ' '); i != -1 {
		statusCode = resp.Status[:i]
	}
	if len(statusCode) != 3 {
		return nil, &badStringError{"malformed HTTP status code", statusCode}
	}
	resp.StatusCode, err = strconv.Atoi(statusCode)
	if err != nil || resp.StatusCode < 0 {
		return nil, &badStringError{"malformed HTTP status code", statusCode}
	}
	var ok bool
	if resp.ProtoMajor, resp.ProtoMinor, ok = ParseHTTPVersion(resp.Proto); !ok {
		return nil, &badStringError{"malformed HTTP version", resp.Proto}
	}

	// Parse the response headers.
	mimeHeader, err := tp.ReadMIMEHeader()
	if err != nil {
		if err == io.EOF {
			err = io.ErrUnexpectedEOF
		}
		return nil, err
	}
	resp.Header = Header(mimeHeader)

	fixPragmaCacheControl(resp.Header)

	err = readTransfer(resp, r)
	if err != nil {
		return nil, err
	}

	return resp, nil
}

这里可以看到ReadResponse即为读取TCP连接解析HTTP协议,并构建http.Response内容返回

在readLoop成功返回http.Response之后,会将Response塞到pc.reqch.ch管道中(case rc.ch <- responseAndError{res: resp}),如下:

func (pc *persistConn) readLoop() {
    ...
	alive := true
	for alive {
        ...
		rc := <-pc.reqch
		trace := httptrace.ContextClientTrace(rc.req.Context())

		var resp *Response
		if err == nil {
			resp, err = pc.readResponse(rc, trace)
		} else {
			err = transportReadFromServerError{err}
			closeErr = err
		}

		bodyWritable := resp.bodyIsWritable()
		hasBody := rc.req.Method != "HEAD" && resp.ContentLength != 0
        ...
		if resp.Close || rc.req.Close || resp.StatusCode <= 199 || bodyWritable {
			// Don't do keep-alive on error if either party requested a close
			// or we get an unexpected informational (1xx) response.
			// StatusCode 100 is already handled above.
			alive = false
		}
        ...
		resp.Body = body
		if rc.addedGzip && strings.EqualFold(resp.Header.Get("Content-Encoding"), "gzip") {
			resp.Body = &gzipReader{body: body}
			resp.Header.Del("Content-Encoding")
			resp.Header.Del("Content-Length")
			resp.ContentLength = -1
			resp.Uncompressed = true
		}

		select {
		case rc.ch <- responseAndError{res: resp}:
		case <-rc.callerGone:
			return
		}
        ...
	}
}

而pc.roundTrip会读取该channel(case re := <-resc),并返回http.Response,如下:

func (pc *persistConn) roundTrip(req *transportRequest) (resp *Response, err error) {
    ...

	resc := make(chan responseAndError)
	pc.reqch <- requestAndChan{
		req:        req.Request,
		ch:         resc,
		addedGzip:  requestedGzip,
		continueCh: continueCh,
		callerGone: gone,
	}

	var respHeaderTimer <-chan time.Time
	cancelChan := req.Request.Cancel
	ctxDoneChan := req.Context().Done()
	for {
		testHookWaitResLoop()
		select {
		case re := <-resc:
			if (re.res == nil) == (re.err == nil) {
				panic(fmt.Sprintf("internal error: exactly one of res or err should be set; nil=%v", re.res == nil))
			}
			if debugRoundTrip {
				req.logf("resc recv: %p, %T/%#v", re.res, re.err, re.err)
			}
			if re.err != nil {
				return nil, pc.mapRoundTripError(req, startBytesWritten, re.err)
			}
			return re.res, nil
		}
	}
}

golang http transport结构体关键字段

http.Client
  - Timeout:http client请求生命周期超时设置(包括连接建立,发请求,重定向,以及Response body读取等所有阶段)
  - RoundTrip(http.Transport实现)
    - MaxIdleConns:控制所有hosts的空闲连接最大数目(Zero means no limit.)
    - MaxIdleConnsPerHost:控制某个host的空闲连接(keep-alives)最大数目(设置为0,则默认DefaultMaxIdleConnsPerHost=2)
    - MaxConnsPerHost:控制某个host的所有连接,包括创建中,正在使用的,以及空闲的连接(including connections in the dialing, active, and idle states)。一旦超过限制,dial会阻塞(Zero means no limit)
    - IdleConnTimeout:空闲连接(keep-alives)超时时间
    - h2transport:HTTP/2协议对应的transport
    - ForceAttemptHTTP2:当Dial, DialTLS, or DialContext func or TLSClientConfig提供时,默认情况下会禁止HTTP/2协议。当使用自定义的这些配置时,需要设置ForceAttemptHTTP2字段开启HTTP2
    - DisableKeepAlives:禁止HTTP keep-alives,一个连接只用于一次请求(注意区分TCP keep-alives。HTTP keep-alives用于连接复用;TCP keep-alives用于连接保活) 
    - idleConn(map[connectMethodKey][]*persistConn):空闲连接池
    - idleConnWait(map[connectMethodKey]wantConnQueue):等待建立的连接池
    - connsPerHost(map[connectMethodKey]int):表示每个host(connectMethodKey)的目前连接个数
    - connsPerHostWait(map[connectMethodKey]wantConnQueue):表示每个host(connectMethodKey)等待建立的连接请求
    - (net.Dialer)DialContext:指定底层TCP连接的创建函数
      - Timeout:连接建立的超时时间,操作系统的超时时间一般为3 minutes
      - Deadline:与Timeout作用类似,只不过限制了确定的超时时刻
      - LocalAddr:本地地址,TCP四元组的原始IP地址
      - DualStack(Deprecated):enabled RFC 6555 Fast Fallback Feature
      - FallbackDelay:IPv6连接建立的等待时间,如果超时,则会切换到IPv4(A negative value disables Fast Fallback support.)
      - KeepAlive:设置了活跃连接的TCP keep-alive探针间隔,需要协议层以及操作系统支持(If zero, keep-alive probes are sent with a default value(currently 15 seconds))

调用关键流程

  • step1 - http.NewRequest(method, url string, body io.Reader) 创建请求
  • step2 - http.Client.Do(req *Request) 发送请求&接收应答
整个http.Client.Do逻辑分为两道,第一道执行send发送请求接收Response,关闭Req.Body;第二层对请求执行重定向等操作(若需要redirect),并关闭Resp.Body

http.Client.Do(req) => send(ireq *Request, rt RoundTripper, deadline time.Time)
  -> setRequestCancel(req, rt, deadline) 设置请求超时时间
  -> http.Client.RoundTrip(req) 

=> http.Client.RoundTrip(req) 
  -> http.Transport.t.getConn(treq, cm) 获取连接(新创建的 or 复用空闲连接) 
    -> http.Transport.queueForIdleConn(w *wantConn) 获取空闲连接
    -> http.Transport.dialConnFor(w *wantConn) -> http.Transport.dialConn(ctx context.Context, cm connectMethod) 创建新连接
      -> http.Transport.dial(ctx context.Context, network, addr string) -> http.Transport.DialContext(net.Dialer.DialContext)
      -> http.persistConn.readLoop() read http.Response(读取响应内容,并构建http.Response)
      -> http.persistConn.writeLoop() write http.Request(发送请求) 
  -> http.persistConn.roundTrip(treq) 发送请求,读取Response并返回
  • step3 - http.Response.Body.Close() 关闭应答Body

Refs


上一篇     下一篇